llvm-6502/lib/Transforms/IPO/PassManagerBuilder.cpp

409 lines
15 KiB
C++
Raw Normal View History

//===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PassManagerBuilder class, which is used to set up a
// "standard" optimization sequence suitable for languages like C and C++.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm-c/Transforms/PassManagerBuilder.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Vectorize.h"
using namespace llvm;
static cl::opt<bool>
RunLoopVectorization("vectorize-loops",
cl::desc("Run the Loop vectorization passes"));
static cl::opt<bool>
RunSLPVectorization("vectorize-slp",
cl::desc("Run the SLP vectorization passes"));
static cl::opt<bool>
RunBBVectorization("vectorize-slp-aggressive",
cl::desc("Run the BB vectorization passes"));
static cl::opt<bool>
UseGVNAfterVectorization("use-gvn-after-vectorization",
cl::init(false), cl::Hidden,
cl::desc("Run GVN instead of Early CSE after vectorization passes"));
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163883 91177308-0d34-0410-b5e6-96231b3b80d8
2012-09-14 09:22:59 +00:00
static cl::opt<bool> UseNewSROA("use-new-sroa",
cl::init(true), cl::Hidden,
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163883 91177308-0d34-0410-b5e6-96231b3b80d8
2012-09-14 09:22:59 +00:00
cl::desc("Enable the new, experimental SROA pass"));
PassManagerBuilder::PassManagerBuilder() {
OptLevel = 2;
SizeLevel = 0;
LibraryInfo = 0;
Inliner = 0;
DisableSimplifyLibCalls = false;
DisableUnitAtATime = false;
DisableUnrollLoops = false;
BBVectorize = RunBBVectorization;
SLPVectorize = RunSLPVectorization;
LoopVectorize = RunLoopVectorization;
}
PassManagerBuilder::~PassManagerBuilder() {
delete LibraryInfo;
delete Inliner;
}
/// Set of global extensions, automatically added as part of the standard set.
static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy,
PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions;
void PassManagerBuilder::addGlobalExtension(
PassManagerBuilder::ExtensionPointTy Ty,
PassManagerBuilder::ExtensionFn Fn) {
GlobalExtensions->push_back(std::make_pair(Ty, Fn));
}
void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) {
Extensions.push_back(std::make_pair(Ty, Fn));
}
void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy,
PassManagerBase &PM) const {
for (unsigned i = 0, e = GlobalExtensions->size(); i != e; ++i)
if ((*GlobalExtensions)[i].first == ETy)
(*GlobalExtensions)[i].second(*this, PM);
for (unsigned i = 0, e = Extensions.size(); i != e; ++i)
if (Extensions[i].first == ETy)
Extensions[i].second(*this, PM);
}
void
PassManagerBuilder::addInitialAliasAnalysisPasses(PassManagerBase &PM) const {
// Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
// BasicAliasAnalysis wins if they disagree. This is intended to help
// support "obvious" type-punning idioms.
PM.add(createTypeBasedAliasAnalysisPass());
PM.add(createBasicAliasAnalysisPass());
}
void PassManagerBuilder::populateFunctionPassManager(FunctionPassManager &FPM) {
addExtensionsToPM(EP_EarlyAsPossible, FPM);
// Add LibraryInfo if we have some.
if (LibraryInfo) FPM.add(new TargetLibraryInfo(*LibraryInfo));
if (OptLevel == 0) return;
addInitialAliasAnalysisPasses(FPM);
FPM.add(createCFGSimplificationPass());
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163883 91177308-0d34-0410-b5e6-96231b3b80d8
2012-09-14 09:22:59 +00:00
if (UseNewSROA)
FPM.add(createSROAPass());
else
FPM.add(createScalarReplAggregatesPass());
FPM.add(createEarlyCSEPass());
FPM.add(createLowerExpectIntrinsicPass());
}
void PassManagerBuilder::populateModulePassManager(PassManagerBase &MPM) {
// If all optimizations are disabled, just run the always-inline pass.
if (OptLevel == 0) {
if (Inliner) {
MPM.add(Inliner);
Inliner = 0;
}
2012-10-18 08:05:46 +00:00
// FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
// pass manager, but we don't want to add extensions into that pass manager.
// To prevent this we must insert a no-op module pass to reset the pass
// manager to get the same behavior as EP_OptimizerLast in non-O0 builds.
if (!GlobalExtensions->empty() || !Extensions.empty())
MPM.add(createBarrierNoopPass());
addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
return;
}
// Add LibraryInfo if we have some.
if (LibraryInfo) MPM.add(new TargetLibraryInfo(*LibraryInfo));
addInitialAliasAnalysisPasses(MPM);
if (!DisableUnitAtATime) {
addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);
MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
MPM.add(createIPSCCPPass()); // IP SCCP
MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
MPM.add(createInstructionCombiningPass());// Clean up after IPCP & DAE
MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE
}
// Start of CallGraph SCC passes.
if (!DisableUnitAtATime)
MPM.add(createPruneEHPass()); // Remove dead EH info
if (Inliner) {
MPM.add(Inliner);
Inliner = 0;
}
if (!DisableUnitAtATime)
MPM.add(createFunctionAttrsPass()); // Set readonly/readnone attrs
if (OptLevel > 2)
MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args
// Start of function pass.
// Break up aggregate allocas, using SSAUpdater.
Port the SSAUpdater-based promotion logic from the old SROA pass to the new one, and add support for running the new pass in that mode and in that slot of the pass manager. With this the new pass can completely replace the old one within the pipeline. The strategy for enabling or disabling the SSAUpdater logic is to do it by making the requirement of the domtree analysis optional. By default, it is required and we get the standard mem2reg approach. This is usually the desired strategy when run in stand-alone situations. Within the CGSCC pass manager, we disable requiring of the domtree analysis and consequentially trigger fallback to the SSAUpdater promotion. In theory this would allow the pass to re-use a domtree if one happened to be available even when run in a mode that doesn't require it. In practice, it lets us have a single pass rather than two which was simpler for me to wrap my head around. There is a hidden flag to force the use of the SSAUpdater code path for the purpose of testing. The primary testing strategy is just to run the existing tests through that path. One notable difference is that it has custom code to handle lifetime markers, and one of the tests has been enhanced to exercise that code. This has survived a bootstrap and the test suite without serious correctness issues, however my run of the test suite produced *very* alarming performance numbers. I don't entirely understand or trust them though, so more investigation is on-going. To aid my understanding of the performance impact of the new SROA now that it runs throughout the optimization pipeline, I'm enabling it by default in this commit, and will disable it again once the LNT bots have picked up one iteration with it. I want to get those bots (which are much more stable) to evaluate the impact of the change before I jump to any conclusions. NOTE: Several Clang tests will fail because they run -O3 and check the result's order of output. They'll go back to passing once I disable it again. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163965 91177308-0d34-0410-b5e6-96231b3b80d8
2012-09-15 11:43:14 +00:00
if (UseNewSROA)
MPM.add(createSROAPass(/*RequiresDomTree*/ false));
else
MPM.add(createScalarReplAggregatesPass(-1, false));
MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
if (!DisableSimplifyLibCalls)
MPM.add(createSimplifyLibCallsPass()); // Library Call Optimizations
MPM.add(createJumpThreadingPass()); // Thread jumps.
MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
MPM.add(createInstructionCombiningPass()); // Combine silly seq's
MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
MPM.add(createReassociatePass()); // Reassociate expressions
MPM.add(createLoopRotatePass()); // Rotate Loop
MPM.add(createLICMPass()); // Hoist loop invariants
MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3));
MPM.add(createInstructionCombiningPass());
MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars
MPM.add(createLoopIdiomPass()); // Recognize idioms like memset.
MPM.add(createLoopDeletionPass()); // Delete dead loops
if (LoopVectorize && OptLevel > 2)
MPM.add(createLoopVectorizePass());
if (!DisableUnrollLoops)
MPM.add(createLoopUnrollPass()); // Unroll small loops
addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
if (OptLevel > 1)
MPM.add(createGVNPass()); // Remove redundancies
MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset
MPM.add(createSCCPPass()); // Constant prop with SCCP
// Run instcombine after redundancy elimination to exploit opportunities
// opened up by them.
MPM.add(createInstructionCombiningPass());
MPM.add(createJumpThreadingPass()); // Thread jumps
MPM.add(createCorrelatedValuePropagationPass());
MPM.add(createDeadStoreEliminationPass()); // Delete dead stores
addExtensionsToPM(EP_ScalarOptimizerLate, MPM);
if (SLPVectorize)
MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
if (BBVectorize) {
MPM.add(createBBVectorizePass());
MPM.add(createInstructionCombiningPass());
if (OptLevel > 1 && UseGVNAfterVectorization)
MPM.add(createGVNPass()); // Remove redundancies
else
MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
// BBVectorize may have significantly shortened a loop body; unroll again.
if (!DisableUnrollLoops)
MPM.add(createLoopUnrollPass());
}
MPM.add(createAggressiveDCEPass()); // Delete dead instructions
MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
MPM.add(createInstructionCombiningPass()); // Clean up after everything.
if (!DisableUnitAtATime) {
// FIXME: We shouldn't bother with this anymore.
MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
// GlobalOpt already deletes dead functions and globals, at -O2 try a
// late pass of GlobalDCE. It is capable of deleting dead cycles.
if (OptLevel > 1) {
MPM.add(createGlobalDCEPass()); // Remove dead fns and globals.
MPM.add(createConstantMergePass()); // Merge dup global constants
}
}
addExtensionsToPM(EP_OptimizerLast, MPM);
}
void PassManagerBuilder::populateLTOPassManager(PassManagerBase &PM,
bool Internalize,
bool RunInliner,
bool DisableGVNLoadPRE) {
// Provide AliasAnalysis services for optimizations.
addInitialAliasAnalysisPasses(PM);
// Now that composite has been compiled, scan through the module, looking
// for a main function. If main is defined, mark all other functions
// internal.
if (Internalize) {
std::vector<const char*> E;
E.push_back("main");
PM.add(createInternalizePass(E));
}
// Propagate constants at call sites into the functions they call. This
// opens opportunities for globalopt (and inlining) by substituting function
// pointers passed as arguments to direct uses of functions.
PM.add(createIPSCCPPass());
// Now that we internalized some globals, see if we can hack on them!
PM.add(createGlobalOptimizerPass());
// Linking modules together can lead to duplicated global constants, only
// keep one copy of each constant.
PM.add(createConstantMergePass());
// Remove unused arguments from functions.
PM.add(createDeadArgEliminationPass());
// Reduce the code after globalopt and ipsccp. Both can open up significant
// simplification opportunities, and both can propagate functions through
// function pointers. When this happens, we often have to resolve varargs
// calls, etc, so let instcombine do this.
PM.add(createInstructionCombiningPass());
// Inline small functions
if (RunInliner)
PM.add(createFunctionInliningPass());
PM.add(createPruneEHPass()); // Remove dead EH info.
// Optimize globals again if we ran the inliner.
if (RunInliner)
PM.add(createGlobalOptimizerPass());
PM.add(createGlobalDCEPass()); // Remove dead functions.
// If we didn't decide to inline a function, check to see if we can
// transform it to pass arguments by value instead of by reference.
PM.add(createArgumentPromotionPass());
// The IPO passes may leave cruft around. Clean up after them.
PM.add(createInstructionCombiningPass());
PM.add(createJumpThreadingPass());
// Break up allocas
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163883 91177308-0d34-0410-b5e6-96231b3b80d8
2012-09-14 09:22:59 +00:00
if (UseNewSROA)
PM.add(createSROAPass());
else
PM.add(createScalarReplAggregatesPass());
// Run a few AA driven optimizations here and now, to cleanup the code.
PM.add(createFunctionAttrsPass()); // Add nocapture.
PM.add(createGlobalsModRefPass()); // IP alias analysis.
PM.add(createLICMPass()); // Hoist loop invariants.
PM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
PM.add(createMemCpyOptPass()); // Remove dead memcpys.
// Nuke dead stores.
PM.add(createDeadStoreEliminationPass());
// Cleanup and simplify the code after the scalar optimizations.
PM.add(createInstructionCombiningPass());
PM.add(createJumpThreadingPass());
// Delete basic blocks, which optimization passes may have killed.
PM.add(createCFGSimplificationPass());
// Now that we have optimized the program, discard unreachable functions.
PM.add(createGlobalDCEPass());
}
LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
PassManagerBuilder *PMB = new PassManagerBuilder();
return wrap(PMB);
}
void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
PassManagerBuilder *Builder = unwrap(PMB);
delete Builder;
}
void
LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
unsigned OptLevel) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->OptLevel = OptLevel;
}
void
LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
unsigned SizeLevel) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->SizeLevel = SizeLevel;
}
void
LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
LLVMBool Value) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->DisableUnitAtATime = Value;
}
void
LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
LLVMBool Value) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->DisableUnrollLoops = Value;
}
void
LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
LLVMBool Value) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->DisableSimplifyLibCalls = Value;
}
void
LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
unsigned Threshold) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->Inliner = createFunctionInliningPass(Threshold);
}
void
LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
LLVMPassManagerRef PM) {
PassManagerBuilder *Builder = unwrap(PMB);
FunctionPassManager *FPM = unwrap<FunctionPassManager>(PM);
Builder->populateFunctionPassManager(*FPM);
}
void
LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
LLVMPassManagerRef PM) {
PassManagerBuilder *Builder = unwrap(PMB);
PassManagerBase *MPM = unwrap(PM);
Builder->populateModulePassManager(*MPM);
}
void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB,
LLVMPassManagerRef PM,
LLVMBool Internalize,
LLVMBool RunInliner) {
PassManagerBuilder *Builder = unwrap(PMB);
PassManagerBase *LPM = unwrap(PM);
Builder->populateLTOPassManager(*LPM, Internalize != 0, RunInliner != 0);
}