llvm-6502/lib/Transforms/Scalar/LoopRotation.cpp

447 lines
16 KiB
C++
Raw Normal View History

//===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements Loop Rotation Pass.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-rotate"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Function.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallVector.h"
using namespace llvm;
#define MAX_HEADER_SIZE 16
STATISTIC(NumRotated, "Number of loops rotated");
namespace {
class LoopRotate : public LoopPass {
public:
static char ID; // Pass ID, replacement for typeid
LoopRotate() : LoopPass(ID) {
initializeLoopRotatePass(*PassRegistry::getPassRegistry());
}
// Rotate Loop L as many times as possible. Return true if
// loop is rotated at least once.
bool runOnLoop(Loop *L, LPPassManager &LPM);
// LCSSA form makes instruction renaming easier.
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<DominatorTree>();
AU.addPreserved<DominanceFrontier>();
AU.addRequired<LoopInfo>();
AU.addPreserved<LoopInfo>();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
AU.addPreserved<ScalarEvolution>();
}
// Helper functions
/// Do actual work
bool rotateLoop(Loop *L, LPPassManager &LPM);
/// Initialize local data
void initialize();
/// After loop rotation, loop pre-header has multiple sucessors.
/// Insert one forwarding basic block to ensure that loop pre-header
/// has only one successor.
void preserveCanonicalLoopForm(LPPassManager &LPM);
private:
Loop *L;
BasicBlock *OrigHeader;
BasicBlock *OrigPreHeader;
BasicBlock *OrigLatch;
BasicBlock *NewHeader;
BasicBlock *Exit;
LPPassManager *LPM_Ptr;
};
}
char LoopRotate::ID = 0;
INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
/// Rotate Loop L as many times as possible. Return true if
/// the loop is rotated at least once.
bool LoopRotate::runOnLoop(Loop *Lp, LPPassManager &LPM) {
bool RotatedOneLoop = false;
initialize();
LPM_Ptr = &LPM;
// One loop can be rotated multiple times.
while (rotateLoop(Lp,LPM)) {
RotatedOneLoop = true;
initialize();
}
return RotatedOneLoop;
}
/// Rotate loop LP. Return true if the loop is rotated.
bool LoopRotate::rotateLoop(Loop *Lp, LPPassManager &LPM) {
L = Lp;
OrigPreHeader = L->getLoopPreheader();
if (!OrigPreHeader) return false;
OrigLatch = L->getLoopLatch();
if (!OrigLatch) return false;
OrigHeader = L->getHeader();
// If the loop has only one block then there is not much to rotate.
if (L->getBlocks().size() == 1)
return false;
// If the loop header is not one of the loop exiting blocks then
// either this loop is already rotated or it is not
// suitable for loop rotation transformations.
if (!L->isLoopExiting(OrigHeader))
return false;
BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
if (!BI)
return false;
assert(BI->isConditional() && "Branch Instruction is not conditional");
// Updating PHInodes in loops with multiple exits adds complexity.
// Keep it simple, and restrict loop rotation to loops with one exit only.
// In future, lift this restriction and support for multiple exits if
// required.
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getExitBlocks(ExitBlocks);
if (ExitBlocks.size() > 1)
return false;
// Check size of original header and reject
// loop if it is very big.
unsigned Size = 0;
// FIXME: Use common api to estimate size.
for (BasicBlock::const_iterator OI = OrigHeader->begin(),
OE = OrigHeader->end(); OI != OE; ++OI) {
if (isa<PHINode>(OI))
continue; // PHI nodes don't count.
if (isa<DbgInfoIntrinsic>(OI))
continue; // Debug intrinsics don't count as size.
++Size;
}
if (Size > MAX_HEADER_SIZE)
return false;
// Now, this loop is suitable for rotation.
// Anything ScalarEvolution may know about this loop or the PHI nodes
// in its header will soon be invalidated.
if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
SE->forgetLoop(L);
// Find new Loop header. NewHeader is a Header's one and only successor
// that is inside loop. Header's other successor is outside the
// loop. Otherwise loop is not suitable for rotation.
Exit = BI->getSuccessor(0);
NewHeader = BI->getSuccessor(1);
if (L->contains(Exit))
std::swap(Exit, NewHeader);
assert(NewHeader && "Unable to determine new loop header");
assert(L->contains(NewHeader) && !L->contains(Exit) &&
"Unable to determine loop header and exit blocks");
// This code assumes that the new header has exactly one predecessor.
// Remove any single-entry PHI nodes in it.
assert(NewHeader->getSinglePredecessor() &&
"New header doesn't have one pred!");
FoldSingleEntryPHINodes(NewHeader);
// Begin by walking OrigHeader and populating ValueMap with an entry for
// each Instruction.
BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
DenseMap<const Value *, Value *> ValueMap;
// For PHI nodes, the value available in OldPreHeader is just the
// incoming value from OldPreHeader.
for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
ValueMap[PN] = PN->getIncomingValue(PN->getBasicBlockIndex(OrigPreHeader));
// For the rest of the instructions, either hoist to the OrigPreheader if
// possible or create a clone in the OldPreHeader if not.
TerminatorInst *LoopEntryBranch = OrigPreHeader->getTerminator();
while (I != E) {
Instruction *Inst = I++;
// If the instruction's operands are invariant and it doesn't read or write
// memory, then it is safe to hoist. Doing this doesn't change the order of
// execution in the preheader, but does prevent the instruction from
// executing in each iteration of the loop. This means it is safe to hoist
// something that might trap, but isn't safe to hoist something that reads
// memory (without proving that the loop doesn't write).
if (L->hasLoopInvariantOperands(Inst) &&
!Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
!isa<TerminatorInst>(Inst)) {
Inst->moveBefore(LoopEntryBranch);
continue;
}
// Otherwise, create a duplicate of the instruction.
Instruction *C = Inst->clone();
C->setName(Inst->getName());
C->insertBefore(LoopEntryBranch);
ValueMap[Inst] = C;
}
// Along with all the other instructions, we just cloned OrigHeader's
// terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
// successors by duplicating their incoming values for OrigHeader.
TerminatorInst *TI = OrigHeader->getTerminator();
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreHeader);
// Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
// OrigPreHeader's old terminator (the original branch into the loop), and
// remove the corresponding incoming values from the PHI nodes in OrigHeader.
LoopEntryBranch->eraseFromParent();
for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreHeader));
// Now fix up users of the instructions in OrigHeader, inserting PHI nodes
// as necessary.
SSAUpdater SSA;
for (I = OrigHeader->begin(); I != E; ++I) {
Value *OrigHeaderVal = I;
Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
// The value now exits in two versions: the initial value in the preheader
// and the loop "next" value in the original header.
SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
SSA.AddAvailableValue(OrigPreHeader, OrigPreHeaderVal);
// Visit each use of the OrigHeader instruction.
for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
UE = OrigHeaderVal->use_end(); UI != UE; ) {
// Grab the use before incrementing the iterator.
Use &U = UI.getUse();
// Increment the iterator before removing the use from the list.
++UI;
// SSAUpdater can't handle a non-PHI use in the same block as an
// earlier def. We can easily handle those cases manually.
Instruction *UserInst = cast<Instruction>(U.getUser());
if (!isa<PHINode>(UserInst)) {
BasicBlock *UserBB = UserInst->getParent();
// The original users in the OrigHeader are already using the
// original definitions.
if (UserBB == OrigHeader)
continue;
// Users in the OrigPreHeader need to use the value to which the
// original definitions are mapped.
if (UserBB == OrigPreHeader) {
U = OrigPreHeaderVal;
continue;
}
}
// Anything else can be handled by SSAUpdater.
SSA.RewriteUse(U);
}
}
// NewHeader is now the header of the loop.
L->moveToHeader(NewHeader);
// Move the original header to the bottom of the loop, where it now more
// naturally belongs. This isn't necessary for correctness, and CodeGen can
// usually reorder blocks on its own to fix things like this up, but it's
// still nice to keep the IR readable.
//
// The original header should have only one predecessor at this point, since
// we checked that the loop had a proper preheader and unique backedge before
// we started.
assert(OrigHeader->getSinglePredecessor() &&
"Original loop header has too many predecessors after loop rotation!");
OrigHeader->moveAfter(OrigHeader->getSinglePredecessor());
// Also, since this original header only has one predecessor, zap its
// PHI nodes, which are now trivial.
FoldSingleEntryPHINodes(OrigHeader);
// TODO: We could just go ahead and merge OrigHeader into its predecessor
// at this point, if we don't mind updating dominator info.
// Establish a new preheader, update dominators, etc.
preserveCanonicalLoopForm(LPM);
++NumRotated;
return true;
}
/// Initialize local data
void LoopRotate::initialize() {
L = NULL;
OrigHeader = NULL;
OrigPreHeader = NULL;
NewHeader = NULL;
Exit = NULL;
}
/// After loop rotation, loop pre-header has multiple sucessors.
/// Insert one forwarding basic block to ensure that loop pre-header
/// has only one successor.
void LoopRotate::preserveCanonicalLoopForm(LPPassManager &LPM) {
// Right now original pre-header has two successors, new header and
// exit block. Insert new block between original pre-header and
// new header such that loop's new pre-header has only one successor.
BasicBlock *NewPreHeader = BasicBlock::Create(OrigHeader->getContext(),
"bb.nph",
OrigHeader->getParent(),
NewHeader);
LoopInfo &LI = getAnalysis<LoopInfo>();
if (Loop *PL = LI.getLoopFor(OrigPreHeader))
PL->addBasicBlockToLoop(NewPreHeader, LI.getBase());
BranchInst::Create(NewHeader, NewPreHeader);
BranchInst *OrigPH_BI = cast<BranchInst>(OrigPreHeader->getTerminator());
if (OrigPH_BI->getSuccessor(0) == NewHeader)
OrigPH_BI->setSuccessor(0, NewPreHeader);
else {
assert(OrigPH_BI->getSuccessor(1) == NewHeader &&
"Unexpected original pre-header terminator");
OrigPH_BI->setSuccessor(1, NewPreHeader);
}
PHINode *PN;
for (BasicBlock::iterator I = NewHeader->begin();
(PN = dyn_cast<PHINode>(I)); ++I) {
int index = PN->getBasicBlockIndex(OrigPreHeader);
assert(index != -1 && "Expected incoming value from Original PreHeader");
PN->setIncomingBlock(index, NewPreHeader);
assert(PN->getBasicBlockIndex(OrigPreHeader) == -1 &&
"Expected only one incoming value from Original PreHeader");
}
if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
DT->addNewBlock(NewPreHeader, OrigPreHeader);
DT->changeImmediateDominator(L->getHeader(), NewPreHeader);
DT->changeImmediateDominator(Exit, OrigPreHeader);
for (Loop::block_iterator BI = L->block_begin(), BE = L->block_end();
BI != BE; ++BI) {
BasicBlock *B = *BI;
if (L->getHeader() != B) {
DomTreeNode *Node = DT->getNode(B);
if (Node && Node->getBlock() == OrigHeader)
DT->changeImmediateDominator(*BI, L->getHeader());
}
}
DT->changeImmediateDominator(OrigHeader, OrigLatch);
}
if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>()) {
// New Preheader's dominance frontier is Exit block.
DominanceFrontier::DomSetType NewPHSet;
NewPHSet.insert(Exit);
DF->addBasicBlock(NewPreHeader, NewPHSet);
// New Header's dominance frontier now includes itself and Exit block
DominanceFrontier::iterator HeadI = DF->find(L->getHeader());
if (HeadI != DF->end()) {
DominanceFrontier::DomSetType & HeaderSet = HeadI->second;
HeaderSet.clear();
HeaderSet.insert(L->getHeader());
HeaderSet.insert(Exit);
} else {
DominanceFrontier::DomSetType HeaderSet;
HeaderSet.insert(L->getHeader());
HeaderSet.insert(Exit);
DF->addBasicBlock(L->getHeader(), HeaderSet);
}
// Original header (new Loop Latch)'s dominance frontier is Exit.
DominanceFrontier::iterator LatchI = DF->find(L->getLoopLatch());
if (LatchI != DF->end()) {
DominanceFrontier::DomSetType &LatchSet = LatchI->second;
LatchSet = LatchI->second;
LatchSet.clear();
LatchSet.insert(Exit);
} else {
DominanceFrontier::DomSetType LatchSet;
LatchSet.insert(Exit);
DF->addBasicBlock(L->getHeader(), LatchSet);
}
// If a loop block dominates new loop latch then add to its frontiers
// new header and Exit and remove new latch (which is equal to original
// header).
BasicBlock *NewLatch = L->getLoopLatch();
assert(NewLatch == OrigHeader && "NewLatch is inequal to OrigHeader");
if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
for (Loop::block_iterator BI = L->block_begin(), BE = L->block_end();
BI != BE; ++BI) {
BasicBlock *B = *BI;
if (DT->dominates(B, NewLatch)) {
DominanceFrontier::iterator BDFI = DF->find(B);
if (BDFI != DF->end()) {
DominanceFrontier::DomSetType &BSet = BDFI->second;
BSet.erase(NewLatch);
BSet.insert(L->getHeader());
BSet.insert(Exit);
} else {
DominanceFrontier::DomSetType BSet;
BSet.insert(L->getHeader());
BSet.insert(Exit);
DF->addBasicBlock(B, BSet);
}
}
}
}
}
// Preserve canonical loop form, which means Exit block should
// have only one predecessor.
SplitEdge(L->getLoopLatch(), Exit, this);
assert(NewHeader && L->getHeader() == NewHeader &&
"Invalid loop header after loop rotation");
assert(NewPreHeader && L->getLoopPreheader() == NewPreHeader &&
"Invalid loop preheader after loop rotation");
assert(L->getLoopLatch() &&
"Invalid loop latch after loop rotation");
}