llvm-6502/lib/Target/ARM/MCTargetDesc/ARMAsmBackend.cpp

858 lines
32 KiB
C++
Raw Normal View History

//===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/ARMMCTargetDesc.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "MCTargetDesc/ARMFixupKinds.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDirectives.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCMachObjectWriter.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachO.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
class ARMELFObjectWriter : public MCELFObjectTargetWriter {
public:
ARMELFObjectWriter(uint8_t OSABI)
: MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
/*HasRelocationAddend*/ false) {}
};
class ARMAsmBackend : public MCAsmBackend {
const MCSubtargetInfo* STI;
bool isThumbMode; // Currently emitting Thumb code.
bool IsLittleEndian; // Big or little endian.
public:
ARMAsmBackend(const Target &T, const StringRef TT, bool IsLittle)
: MCAsmBackend(), STI(ARM_MC::createARMMCSubtargetInfo(TT, "", "")),
isThumbMode(TT.startswith("thumb")), IsLittleEndian(IsLittle) {}
~ARMAsmBackend() {
delete STI;
}
unsigned getNumFixupKinds() const override {
return ARM::NumTargetFixupKinds;
}
bool hasNOP() const {
return (STI->getFeatureBits() & ARM::HasV6T2Ops) != 0;
}
const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
// This table *must* be in the order that the fixup_* kinds are defined in
// ARMFixupKinds.h.
//
// Name Offset (bits) Size (bits) Flags
{ "fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_t2_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
{ "fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_t2_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
{ "fixup_thumb_adr_pcrel_10",0, 8, MCFixupKindInfo::FKF_IsPCRel |
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
{ "fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_t2_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
{ "fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_thumb_cp", 0, 8, MCFixupKindInfo::FKF_IsPCRel |
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
{ "fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel },
// movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 - 19.
{ "fixup_arm_movt_hi16", 0, 20, 0 },
{ "fixup_arm_movw_lo16", 0, 20, 0 },
{ "fixup_t2_movt_hi16", 0, 20, 0 },
{ "fixup_t2_movw_lo16", 0, 20, 0 },
};
const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
// This table *must* be in the order that the fixup_* kinds are defined in
// ARMFixupKinds.h.
//
// Name Offset (bits) Size (bits) Flags
{ "fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_t2_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
{ "fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_t2_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
{ "fixup_thumb_adr_pcrel_10",8, 8, MCFixupKindInfo::FKF_IsPCRel |
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
{ "fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_t2_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
{ "fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_arm_thumb_cp", 8, 8, MCFixupKindInfo::FKF_IsPCRel |
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
{ "fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel },
// movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 - 19.
{ "fixup_arm_movt_hi16", 12, 20, 0 },
{ "fixup_arm_movw_lo16", 12, 20, 0 },
{ "fixup_t2_movt_hi16", 12, 20, 0 },
{ "fixup_t2_movw_lo16", 12, 20, 0 },
};
if (Kind < FirstTargetFixupKind)
return MCAsmBackend::getFixupKindInfo(Kind);
assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
"Invalid kind!");
return (IsLittleEndian ? InfosLE : InfosBE)[Kind - FirstTargetFixupKind];
}
/// processFixupValue - Target hook to process the literal value of a fixup
/// if necessary.
void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
const MCFixup &Fixup, const MCFragment *DF,
const MCValue &Target, uint64_t &Value,
bool &IsResolved) override;
void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
uint64_t Value, bool IsPCRel) const override;
bool mayNeedRelaxation(const MCInst &Inst) const override;
bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
const MCRelaxableFragment *DF,
const MCAsmLayout &Layout) const override;
void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
void handleAssemblerFlag(MCAssemblerFlag Flag) override {
switch (Flag) {
default: break;
case MCAF_Code16:
setIsThumb(true);
break;
case MCAF_Code32:
setIsThumb(false);
break;
}
}
unsigned getPointerSize() const { return 4; }
bool isThumb() const { return isThumbMode; }
void setIsThumb(bool it) { isThumbMode = it; }
bool isLittle() const { return IsLittleEndian; }
};
} // end anonymous namespace
static unsigned getRelaxedOpcode(unsigned Op) {
switch (Op) {
default: return Op;
case ARM::tBcc: return ARM::t2Bcc;
case ARM::tLDRpci: return ARM::t2LDRpci;
case ARM::tADR: return ARM::t2ADR;
case ARM::tB: return ARM::t2B;
case ARM::tCBZ: return ARM::tHINT;
case ARM::tCBNZ: return ARM::tHINT;
}
}
bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode())
return true;
return false;
}
bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
uint64_t Value,
const MCRelaxableFragment *DF,
const MCAsmLayout &Layout) const {
switch ((unsigned)Fixup.getKind()) {
case ARM::fixup_arm_thumb_br: {
// Relaxing tB to t2B. tB has a signed 12-bit displacement with the
// low bit being an implied zero. There's an implied +4 offset for the
// branch, so we adjust the other way here to determine what's
// encodable.
//
// Relax if the value is too big for a (signed) i8.
int64_t Offset = int64_t(Value) - 4;
return Offset > 2046 || Offset < -2048;
}
case ARM::fixup_arm_thumb_bcc: {
// Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
// low bit being an implied zero. There's an implied +4 offset for the
// branch, so we adjust the other way here to determine what's
// encodable.
//
// Relax if the value is too big for a (signed) i8.
int64_t Offset = int64_t(Value) - 4;
return Offset > 254 || Offset < -256;
}
case ARM::fixup_thumb_adr_pcrel_10:
case ARM::fixup_arm_thumb_cp: {
// If the immediate is negative, greater than 1020, or not a multiple
// of four, the wide version of the instruction must be used.
int64_t Offset = int64_t(Value) - 4;
return Offset > 1020 || Offset < 0 || Offset & 3;
}
case ARM::fixup_arm_thumb_cb:
// If we have a Thumb CBZ or CBNZ instruction and its target is the next
// instruction it is is actually out of range for the instruction.
// It will be changed to a NOP.
int64_t Offset = (Value & ~1);
return Offset == 2;
}
llvm_unreachable("Unexpected fixup kind in fixupNeedsRelaxation()!");
}
void ARMAsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
// Sanity check w/ diagnostic if we get here w/ a bogus instruction.
if (RelaxedOp == Inst.getOpcode()) {
SmallString<256> Tmp;
raw_svector_ostream OS(Tmp);
Inst.dump_pretty(OS);
OS << "\n";
report_fatal_error("unexpected instruction to relax: " + OS.str());
}
// If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
// have to change the operands too.
if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
RelaxedOp == ARM::tHINT) {
Res.setOpcode(RelaxedOp);
Res.addOperand(MCOperand::CreateImm(0));
Res.addOperand(MCOperand::CreateImm(14));
Res.addOperand(MCOperand::CreateReg(0));
return;
}
// The rest of instructions we're relaxing have the same operands.
// We just need to update to the proper opcode.
Res = Inst;
Res.setOpcode(RelaxedOp);
}
bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0
const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
if (isThumb()) {
const uint16_t nopEncoding = hasNOP() ? Thumb2_16bitNopEncoding
: Thumb1_16bitNopEncoding;
uint64_t NumNops = Count / 2;
for (uint64_t i = 0; i != NumNops; ++i)
OW->Write16(nopEncoding);
if (Count & 1)
OW->Write8(0);
return true;
}
// ARM mode
const uint32_t nopEncoding = hasNOP() ? ARMv6T2_NopEncoding
: ARMv4_NopEncoding;
uint64_t NumNops = Count / 4;
for (uint64_t i = 0; i != NumNops; ++i)
OW->Write32(nopEncoding);
// FIXME: should this function return false when unable to write exactly
// 'Count' bytes with NOP encodings?
switch (Count % 4) {
default: break; // No leftover bytes to write
case 1: OW->Write8(0); break;
case 2: OW->Write16(0); break;
case 3: OW->Write16(0); OW->Write8(0xa0); break;
}
return true;
}
static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
if (IsLittleEndian) {
// Note that the halfwords are stored high first and low second in thumb;
// so we need to swap the fixup value here to map properly.
uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
Swapped |= (Value & 0x0000FFFF) << 16;
return Swapped;
}
else
return Value;
}
static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
bool IsLittleEndian) {
uint32_t Value;
if (IsLittleEndian) {
Value = (SecondHalf & 0xFFFF) << 16;
Value |= (FirstHalf & 0xFFFF);
} else {
Value = (SecondHalf & 0xFFFF);
Value |= (FirstHalf & 0xFFFF) << 16;
}
return Value;
}
static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
bool IsPCRel, MCContext *Ctx,
bool IsLittleEndian) {
unsigned Kind = Fixup.getKind();
switch (Kind) {
default:
llvm_unreachable("Unknown fixup kind!");
case FK_Data_1:
case FK_Data_2:
case FK_Data_4:
return Value;
case FK_SecRel_2:
return Value;
case FK_SecRel_4:
return Value;
case ARM::fixup_arm_movt_hi16:
if (!IsPCRel)
Value >>= 16;
// Fallthrough
case ARM::fixup_arm_movw_lo16: {
unsigned Hi4 = (Value & 0xF000) >> 12;
unsigned Lo12 = Value & 0x0FFF;
// inst{19-16} = Hi4;
// inst{11-0} = Lo12;
Value = (Hi4 << 16) | (Lo12);
return Value;
}
case ARM::fixup_t2_movt_hi16:
if (!IsPCRel)
Value >>= 16;
// Fallthrough
case ARM::fixup_t2_movw_lo16: {
unsigned Hi4 = (Value & 0xF000) >> 12;
unsigned i = (Value & 0x800) >> 11;
unsigned Mid3 = (Value & 0x700) >> 8;
unsigned Lo8 = Value & 0x0FF;
// inst{19-16} = Hi4;
// inst{26} = i;
// inst{14-12} = Mid3;
// inst{7-0} = Lo8;
Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
return swapHalfWords(Value, IsLittleEndian);
}
case ARM::fixup_arm_ldst_pcrel_12:
// ARM PC-relative values are offset by 8.
Value -= 4;
// FALLTHROUGH
case ARM::fixup_t2_ldst_pcrel_12: {
// Offset by 4, adjusted by two due to the half-word ordering of thumb.
Value -= 4;
bool isAdd = true;
if ((int64_t)Value < 0) {
Value = -Value;
isAdd = false;
}
if (Ctx && Value >= 4096)
Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
Value |= isAdd << 23;
// Same addressing mode as fixup_arm_pcrel_10,
// but with 16-bit halfwords swapped.
if (Kind == ARM::fixup_t2_ldst_pcrel_12)
return swapHalfWords(Value, IsLittleEndian);
return Value;
}
case ARM::fixup_thumb_adr_pcrel_10:
return ((Value - 4) >> 2) & 0xff;
case ARM::fixup_arm_adr_pcrel_12: {
// ARM PC-relative values are offset by 8.
Value -= 8;
unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
if ((int64_t)Value < 0) {
Value = -Value;
opc = 2; // 0b0010
}
if (Ctx && ARM_AM::getSOImmVal(Value) == -1)
Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
// Encode the immediate and shift the opcode into place.
return ARM_AM::getSOImmVal(Value) | (opc << 21);
}
case ARM::fixup_t2_adr_pcrel_12: {
Value -= 4;
unsigned opc = 0;
if ((int64_t)Value < 0) {
Value = -Value;
opc = 5;
}
uint32_t out = (opc << 21);
out |= (Value & 0x800) << 15;
out |= (Value & 0x700) << 4;
out |= (Value & 0x0FF);
return swapHalfWords(out, IsLittleEndian);
}
case ARM::fixup_arm_condbranch:
case ARM::fixup_arm_uncondbranch:
case ARM::fixup_arm_uncondbl:
case ARM::fixup_arm_condbl:
case ARM::fixup_arm_blx:
// These values don't encode the low two bits since they're always zero.
// Offset by 8 just as above.
if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL)
return 0;
return 0xffffff & ((Value - 8) >> 2);
case ARM::fixup_t2_uncondbranch: {
Value = Value - 4;
Value >>= 1; // Low bit is not encoded.
uint32_t out = 0;
bool I = Value & 0x800000;
bool J1 = Value & 0x400000;
bool J2 = Value & 0x200000;
J1 ^= I;
J2 ^= I;
out |= I << 26; // S bit
out |= !J1 << 13; // J1 bit
out |= !J2 << 11; // J2 bit
out |= (Value & 0x1FF800) << 5; // imm6 field
out |= (Value & 0x0007FF); // imm11 field
return swapHalfWords(out, IsLittleEndian);
}
case ARM::fixup_t2_condbranch: {
Value = Value - 4;
Value >>= 1; // Low bit is not encoded.
uint64_t out = 0;
out |= (Value & 0x80000) << 7; // S bit
out |= (Value & 0x40000) >> 7; // J2 bit
out |= (Value & 0x20000) >> 4; // J1 bit
out |= (Value & 0x1F800) << 5; // imm6 field
out |= (Value & 0x007FF); // imm11 field
return swapHalfWords(out, IsLittleEndian);
}
case ARM::fixup_arm_thumb_bl: {
// The value doesn't encode the low bit (always zero) and is offset by
// four. The 32-bit immediate value is encoded as
// imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
// where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
// The value is encoded into disjoint bit positions in the destination
// opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
// J = either J1 or J2 bit
//
// BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
//
// Note that the halfwords are stored high first, low second; so we need
// to transpose the fixup value here to map properly.
uint32_t offset = (Value - 4) >> 1;
uint32_t signBit = (offset & 0x800000) >> 23;
uint32_t I1Bit = (offset & 0x400000) >> 22;
uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
uint32_t I2Bit = (offset & 0x200000) >> 21;
uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
uint32_t imm11Bits = (offset & 0x000007FF);
uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
(uint16_t)imm11Bits);
return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
}
case ARM::fixup_arm_thumb_blx: {
// The value doesn't encode the low two bits (always zero) and is offset by
// four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
// imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
// where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
// The value is encoded into disjoint bit positions in the destination
// opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
// J = either J1 or J2 bit, 0 = zero.
//
// BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
//
// Note that the halfwords are stored high first, low second; so we need
// to transpose the fixup value here to map properly.
uint32_t offset = (Value - 2) >> 2;
if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL)
offset = 0;
uint32_t signBit = (offset & 0x400000) >> 22;
uint32_t I1Bit = (offset & 0x200000) >> 21;
uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
uint32_t I2Bit = (offset & 0x100000) >> 20;
uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
uint32_t imm10LBits = (offset & 0x3FF);
uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
((uint16_t)imm10LBits) << 1);
return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
}
case ARM::fixup_arm_thumb_cp:
// Offset by 4, and don't encode the low two bits. Two bytes of that
// 'off by 4' is implicitly handled by the half-word ordering of the
// Thumb encoding, so we only need to adjust by 2 here.
return ((Value - 2) >> 2) & 0xff;
case ARM::fixup_arm_thumb_cb: {
// Offset by 4 and don't encode the lower bit, which is always 0.
uint32_t Binary = (Value - 4) >> 1;
return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
}
case ARM::fixup_arm_thumb_br:
// Offset by 4 and don't encode the lower bit, which is always 0.
return ((Value - 4) >> 1) & 0x7ff;
case ARM::fixup_arm_thumb_bcc:
// Offset by 4 and don't encode the lower bit, which is always 0.
return ((Value - 4) >> 1) & 0xff;
case ARM::fixup_arm_pcrel_10_unscaled: {
Value = Value - 8; // ARM fixups offset by an additional word and don't
// need to adjust for the half-word ordering.
bool isAdd = true;
if ((int64_t)Value < 0) {
Value = -Value;
isAdd = false;
}
// The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
if (Ctx && Value >= 256)
Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
Value = (Value & 0xf) | ((Value & 0xf0) << 4);
return Value | (isAdd << 23);
}
case ARM::fixup_arm_pcrel_10:
Value = Value - 4; // ARM fixups offset by an additional word and don't
// need to adjust for the half-word ordering.
// Fall through.
case ARM::fixup_t2_pcrel_10: {
// Offset by 4, adjusted by two due to the half-word ordering of thumb.
Value = Value - 4;
bool isAdd = true;
if ((int64_t)Value < 0) {
Value = -Value;
isAdd = false;
}
// These values don't encode the low two bits since they're always zero.
Value >>= 2;
if (Ctx && Value >= 256)
Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
Value |= isAdd << 23;
// Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
// swapped.
if (Kind == ARM::fixup_t2_pcrel_10)
return swapHalfWords(Value, IsLittleEndian);
return Value;
}
}
}
void ARMAsmBackend::processFixupValue(const MCAssembler &Asm,
const MCAsmLayout &Layout,
const MCFixup &Fixup,
const MCFragment *DF,
const MCValue &Target, uint64_t &Value,
bool &IsResolved) {
const MCSymbolRefExpr *A = Target.getSymA();
// Some fixups to thumb function symbols need the low bit (thumb bit)
// twiddled.
if ((unsigned)Fixup.getKind() != ARM::fixup_arm_ldst_pcrel_12 &&
(unsigned)Fixup.getKind() != ARM::fixup_t2_ldst_pcrel_12 &&
(unsigned)Fixup.getKind() != ARM::fixup_arm_adr_pcrel_12 &&
(unsigned)Fixup.getKind() != ARM::fixup_thumb_adr_pcrel_10 &&
(unsigned)Fixup.getKind() != ARM::fixup_t2_adr_pcrel_12 &&
(unsigned)Fixup.getKind() != ARM::fixup_arm_thumb_cp) {
if (A) {
const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
if (Asm.isThumbFunc(&Sym))
Value |= 1;
}
}
// For Thumb1 BL instruction, it is possible to be a long jump between
// the basic blocks of the same function. Thus, we would like to resolve
// the offset when the destination has the same MCFragment.
if (A && (unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl) {
const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
const MCSymbolData &SymData = Asm.getSymbolData(Sym);
IsResolved = (SymData.getFragment() == DF);
}
// We must always generate a relocation for BL/BLX instructions if we have
// a symbol to reference, as the linker relies on knowing the destination
// symbol's thumb-ness to get interworking right.
if (A && ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_blx ||
(unsigned)Fixup.getKind() == ARM::fixup_arm_blx ||
(unsigned)Fixup.getKind() == ARM::fixup_arm_uncondbl ||
(unsigned)Fixup.getKind() == ARM::fixup_arm_condbl))
IsResolved = false;
// Try to get the encoded value for the fixup as-if we're mapping it into
// the instruction. This allows adjustFixupValue() to issue a diagnostic
// if the value aren't invalid.
(void)adjustFixupValue(Fixup, Value, false, &Asm.getContext(),
IsLittleEndian);
}
/// getFixupKindNumBytes - The number of bytes the fixup may change.
static unsigned getFixupKindNumBytes(unsigned Kind) {
switch (Kind) {
default:
llvm_unreachable("Unknown fixup kind!");
case FK_Data_1:
case ARM::fixup_arm_thumb_bcc:
case ARM::fixup_arm_thumb_cp:
case ARM::fixup_thumb_adr_pcrel_10:
return 1;
case FK_Data_2:
case ARM::fixup_arm_thumb_br:
case ARM::fixup_arm_thumb_cb:
return 2;
case ARM::fixup_arm_pcrel_10_unscaled:
case ARM::fixup_arm_ldst_pcrel_12:
case ARM::fixup_arm_pcrel_10:
case ARM::fixup_arm_adr_pcrel_12:
case ARM::fixup_arm_uncondbl:
case ARM::fixup_arm_condbl:
case ARM::fixup_arm_blx:
case ARM::fixup_arm_condbranch:
case ARM::fixup_arm_uncondbranch:
return 3;
case FK_Data_4:
case ARM::fixup_t2_ldst_pcrel_12:
case ARM::fixup_t2_condbranch:
case ARM::fixup_t2_uncondbranch:
case ARM::fixup_t2_pcrel_10:
case ARM::fixup_t2_adr_pcrel_12:
case ARM::fixup_arm_thumb_bl:
case ARM::fixup_arm_thumb_blx:
case ARM::fixup_arm_movt_hi16:
case ARM::fixup_arm_movw_lo16:
case ARM::fixup_t2_movt_hi16:
case ARM::fixup_t2_movw_lo16:
return 4;
case FK_SecRel_2:
return 2;
case FK_SecRel_4:
return 4;
}
}
/// getFixupKindContainerSizeBytes - The number of bytes of the
/// container involved in big endian.
static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
switch (Kind) {
default:
llvm_unreachable("Unknown fixup kind!");
case FK_Data_1:
return 1;
case FK_Data_2:
return 2;
case FK_Data_4:
return 4;
case ARM::fixup_arm_thumb_bcc:
case ARM::fixup_arm_thumb_cp:
case ARM::fixup_thumb_adr_pcrel_10:
case ARM::fixup_arm_thumb_br:
case ARM::fixup_arm_thumb_cb:
// Instruction size is 2 bytes.
return 2;
case ARM::fixup_arm_pcrel_10_unscaled:
case ARM::fixup_arm_ldst_pcrel_12:
case ARM::fixup_arm_pcrel_10:
case ARM::fixup_arm_adr_pcrel_12:
case ARM::fixup_arm_uncondbl:
case ARM::fixup_arm_condbl:
case ARM::fixup_arm_blx:
case ARM::fixup_arm_condbranch:
case ARM::fixup_arm_uncondbranch:
case ARM::fixup_t2_ldst_pcrel_12:
case ARM::fixup_t2_condbranch:
case ARM::fixup_t2_uncondbranch:
case ARM::fixup_t2_pcrel_10:
case ARM::fixup_t2_adr_pcrel_12:
case ARM::fixup_arm_thumb_bl:
case ARM::fixup_arm_thumb_blx:
case ARM::fixup_arm_movt_hi16:
case ARM::fixup_arm_movw_lo16:
case ARM::fixup_t2_movt_hi16:
case ARM::fixup_t2_movw_lo16:
// Instruction size is 4 bytes.
return 4;
}
}
void ARMAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
unsigned DataSize, uint64_t Value,
bool IsPCRel) const {
unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
Value = adjustFixupValue(Fixup, Value, IsPCRel, nullptr, IsLittleEndian);
if (!Value) return; // Doesn't change encoding.
unsigned Offset = Fixup.getOffset();
assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
// Used to point to big endian bytes.
unsigned FullSizeBytes;
if (!IsLittleEndian)
FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
// For each byte of the fragment that the fixup touches, mask in the bits from
// the fixup value. The Value has been "split up" into the appropriate
// bitfields above.
for (unsigned i = 0; i != NumBytes; ++i) {
unsigned Idx = IsLittleEndian ? i : (FullSizeBytes - 1 - i);
Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
}
}
namespace {
// FIXME: This should be in a separate file.
class ARMWinCOFFAsmBackend : public ARMAsmBackend {
public:
ARMWinCOFFAsmBackend(const Target &T, const StringRef &Triple)
: ARMAsmBackend(T, Triple, true) { }
MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
return createARMWinCOFFObjectWriter(OS, /*Is64Bit=*/false);
}
};
// FIXME: This should be in a separate file.
// ELF is an ELF of course...
class ELFARMAsmBackend : public ARMAsmBackend {
public:
uint8_t OSABI;
ELFARMAsmBackend(const Target &T, const StringRef TT,
uint8_t OSABI, bool IsLittle)
: ARMAsmBackend(T, TT, IsLittle), OSABI(OSABI) { }
MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
return createARMELFObjectWriter(OS, OSABI, isLittle());
}
};
// FIXME: This should be in a separate file.
class DarwinARMAsmBackend : public ARMAsmBackend {
public:
const MachO::CPUSubTypeARM Subtype;
DarwinARMAsmBackend(const Target &T, const StringRef TT,
MachO::CPUSubTypeARM st)
: ARMAsmBackend(T, TT, /* IsLittleEndian */ true), Subtype(st) {
HasDataInCodeSupport = true;
}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
return createARMMachObjectWriter(OS, /*Is64Bit=*/false,
MachO::CPU_TYPE_ARM,
Subtype);
}
};
} // end anonymous namespace
MCAsmBackend *llvm::createARMAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
StringRef TT, StringRef CPU,
bool isLittle) {
Triple TheTriple(TT);
switch (TheTriple.getObjectFormat()) {
default: llvm_unreachable("unsupported object format");
case Triple::MachO: {
MachO::CPUSubTypeARM CS =
StringSwitch<MachO::CPUSubTypeARM>(TheTriple.getArchName())
.Cases("armv4t", "thumbv4t", MachO::CPU_SUBTYPE_ARM_V4T)
.Cases("armv5e", "thumbv5e", MachO::CPU_SUBTYPE_ARM_V5TEJ)
.Cases("armv6", "thumbv6", MachO::CPU_SUBTYPE_ARM_V6)
.Cases("armv6m", "thumbv6m", MachO::CPU_SUBTYPE_ARM_V6M)
.Cases("armv7em", "thumbv7em", MachO::CPU_SUBTYPE_ARM_V7EM)
.Cases("armv7k", "thumbv7k", MachO::CPU_SUBTYPE_ARM_V7K)
.Cases("armv7m", "thumbv7m", MachO::CPU_SUBTYPE_ARM_V7M)
.Cases("armv7s", "thumbv7s", MachO::CPU_SUBTYPE_ARM_V7S)
.Default(MachO::CPU_SUBTYPE_ARM_V7);
return new DarwinARMAsmBackend(T, TT, CS);
}
case Triple::COFF:
assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
return new ARMWinCOFFAsmBackend(T, TT);
case Triple::ELF:
assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(Triple(TT).getOS());
return new ELFARMAsmBackend(T, TT, OSABI, isLittle);
}
}
MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
StringRef TT, StringRef CPU) {
return createARMAsmBackend(T, MRI, TT, CPU, true);
}
MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
StringRef TT, StringRef CPU) {
return createARMAsmBackend(T, MRI, TT, CPU, false);
}
MCAsmBackend *llvm::createThumbLEAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
StringRef TT, StringRef CPU) {
return createARMAsmBackend(T, MRI, TT, CPU, true);
}
MCAsmBackend *llvm::createThumbBEAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
StringRef TT, StringRef CPU) {
return createARMAsmBackend(T, MRI, TT, CPU, false);
}