llvm-6502/lib/Transforms/Utils/InlineFunction.cpp

329 lines
14 KiB
C++
Raw Normal View History

//===- InlineFunction.cpp - Code to perform function inlining -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements inlining of a function into a call site, resolving
// parameters and the return value as appropriate.
//
// FIXME: This pass should transform alloca instructions in the called function
// into alloca/dealloca pairs! Or perhaps it should refuse to inline them!
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Constant.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
bool llvm::InlineFunction(CallInst *CI) { return InlineFunction(CallSite(CI)); }
bool llvm::InlineFunction(InvokeInst *II) {return InlineFunction(CallSite(II));}
// InlineFunction - This function inlines the called function into the basic
// block of the caller. This returns false if it is not possible to inline this
// call. The program is still in a well defined state if this occurs though.
//
// Note that this only does one level of inlining. For example, if the
// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
// exists in the instruction stream. Similiarly this will inline a recursive
// function by one level.
//
bool llvm::InlineFunction(CallSite CS) {
Instruction *TheCall = CS.getInstruction();
assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
"Instruction not in function!");
const Function *CalledFunc = CS.getCalledFunction();
if (CalledFunc == 0 || // Can't inline external function or indirect
CalledFunc->isExternal() || // call, or call to a vararg function!
CalledFunc->getFunctionType()->isVarArg()) return false;
BasicBlock *OrigBB = TheCall->getParent();
Function *Caller = OrigBB->getParent();
// Get an iterator to the last basic block in the function, which will have
// the new function inlined after it.
//
Function::iterator LastBlock = &Caller->back();
// Make sure to capture all of the return instructions from the cloned
// function.
std::vector<ReturnInst*> Returns;
{ // Scope to destroy ValueMap after cloning.
// Calculate the vector of arguments to pass into the function cloner...
std::map<const Value*, Value*> ValueMap;
assert(std::distance(CalledFunc->abegin(), CalledFunc->aend()) ==
std::distance(CS.arg_begin(), CS.arg_end()) &&
"No varargs calls can be inlined!");
CallSite::arg_iterator AI = CS.arg_begin();
for (Function::const_aiterator I = CalledFunc->abegin(),
E = CalledFunc->aend(); I != E; ++I, ++AI)
ValueMap[I] = *AI;
// Clone the entire body of the callee into the caller.
CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i");
}
// Remember the first block that is newly cloned over.
Function::iterator FirstNewBlock = LastBlock; ++FirstNewBlock;
// If there are any alloca instructions in the block that used to be the entry
// block for the callee, move them to the entry block of the caller. First
// calculate which instruction they should be inserted before. We insert the
// instructions at the end of the current alloca list.
//
if (isa<AllocaInst>(FirstNewBlock->begin())) {
BasicBlock::iterator InsertPoint = Caller->begin()->begin();
for (BasicBlock::iterator I = FirstNewBlock->begin(),
E = FirstNewBlock->end(); I != E; )
if (AllocaInst *AI = dyn_cast<AllocaInst>(I++))
if (isa<Constant>(AI->getArraySize())) {
// Scan for the block of allocas that we can move over.
while (isa<AllocaInst>(I) &&
isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
++I;
// Transfer all of the allocas over in a block. Using splice means
// that they instructions aren't removed from the symbol table, then
// reinserted.
Caller->front().getInstList().splice(InsertPoint,
FirstNewBlock->getInstList(),
AI, I);
}
}
// If we are inlining for an invoke instruction, we must make sure to rewrite
// any inlined 'unwind' instructions into branches to the invoke exception
// destination, and call instructions into invoke instructions.
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
BasicBlock *InvokeDest = II->getUnwindDest();
std::vector<Value*> InvokeDestPHIValues;
// If there are PHI nodes in the exceptional destination block, we need to
// keep track of which values came into them from this invoke, then remove
// the entry for this block.
for (BasicBlock::iterator I = InvokeDest->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I)
// Save the value to use for this edge...
InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(OrigBB));
for (Function::iterator BB = FirstNewBlock, E = Caller->end();
BB != E; ++BB) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
// We only need to check for function calls: inlined invoke instructions
// require no special handling...
if (CallInst *CI = dyn_cast<CallInst>(I)) {
// Convert this function call into an invoke instruction... if it's
// not an intrinsic function call (which are known to not throw).
if (CI->getCalledFunction() &&
CI->getCalledFunction()->getIntrinsicID()) {
++I;
} else {
// First, split the basic block...
BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
// Next, create the new invoke instruction, inserting it at the end
// of the old basic block.
InvokeInst *II =
new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
std::vector<Value*>(CI->op_begin()+1, CI->op_end()),
CI->getName(), BB->getTerminator());
// Make sure that anything using the call now uses the invoke!
CI->replaceAllUsesWith(II);
// Delete the unconditional branch inserted by splitBasicBlock
BB->getInstList().pop_back();
Split->getInstList().pop_front(); // Delete the original call
// Update any PHI nodes in the exceptional block to indicate that
// there is now a new entry in them.
unsigned i = 0;
for (BasicBlock::iterator I = InvokeDest->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I, ++i)
PN->addIncoming(InvokeDestPHIValues[i], BB);
// This basic block is now complete, start scanning the next one.
break;
}
} else {
++I;
}
}
if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
// An UnwindInst requires special handling when it gets inlined into an
// invoke site. Once this happens, we know that the unwind would cause
// a control transfer to the invoke exception destination, so we can
// transform it into a direct branch to the exception destination.
new BranchInst(InvokeDest, UI);
// Delete the unwind instruction!
UI->getParent()->getInstList().pop_back();
// Update any PHI nodes in the exceptional block to indicate that
// there is now a new entry in them.
unsigned i = 0;
for (BasicBlock::iterator I = InvokeDest->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I, ++i)
PN->addIncoming(InvokeDestPHIValues[i], BB);
}
}
// Now that everything is happy, we have one final detail. The PHI nodes in
// the exception destination block still have entries due to the original
// invoke instruction. Eliminate these entries (which might even delete the
// PHI node) now.
InvokeDest->removePredecessor(II->getParent());
}
// If we cloned in _exactly one_ basic block, and if that block ends in a
// return instruction, we splice the body of the inlined callee directly into
// the calling basic block.
if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
// Move all of the instructions right before the call.
OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
FirstNewBlock->begin(), FirstNewBlock->end());
// Remove the cloned basic block.
Caller->getBasicBlockList().pop_back();
// If the call site was an invoke instruction, add a branch to the normal
// destination.
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
new BranchInst(II->getNormalDest(), TheCall);
// If the return instruction returned a value, replace uses of the call with
// uses of the returned value.
if (!TheCall->use_empty())
TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
// Since we are now done with the Call/Invoke, we can delete it.
TheCall->getParent()->getInstList().erase(TheCall);
// Since we are now done with the return instruction, delete it also.
Returns[0]->getParent()->getInstList().erase(Returns[0]);
// We are now done with the inlining.
return true;
}
// Otherwise, we have the normal case, of more than one block to inline or
// multiple return sites.
// We want to clone the entire callee function into the hole between the
// "starter" and "ender" blocks. How we accomplish this depends on whether
// this is an invoke instruction or a call instruction.
BasicBlock *AfterCallBB;
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
// Add an unconditional branch to make this look like the CallInst case...
BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
// Split the basic block. This guarantees that no PHI nodes will have to be
// updated due to new incoming edges, and make the invoke case more
// symmetric to the call case.
AfterCallBB = OrigBB->splitBasicBlock(NewBr,
CalledFunc->getName()+".entry");
} else { // It's a call
// If this is a call instruction, we need to split the basic block that
// the call lives in.
//
AfterCallBB = OrigBB->splitBasicBlock(TheCall,
CalledFunc->getName()+".entry");
}
// Change the branch that used to go to AfterCallBB to branch to the first
// basic block of the inlined function.
//
TerminatorInst *Br = OrigBB->getTerminator();
assert(Br && Br->getOpcode() == Instruction::Br &&
"splitBasicBlock broken!");
Br->setOperand(0, FirstNewBlock);
// Now that the function is correct, make it a little bit nicer. In
// particular, move the basic blocks inserted from the end of the function
// into the space made by splitting the source basic block.
//
Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
FirstNewBlock, Caller->end());
// Handle all of the return instructions that we just cloned in, and eliminate
// any users of the original call/invoke instruction.
if (Returns.size() > 1) {
// The PHI node should go at the front of the new basic block to merge all
// possible incoming values.
//
PHINode *PHI = 0;
if (!TheCall->use_empty()) {
PHI = new PHINode(CalledFunc->getReturnType(),
TheCall->getName(), AfterCallBB->begin());
// Anything that used the result of the function call should now use the
// PHI node as their operand.
//
TheCall->replaceAllUsesWith(PHI);
}
// Loop over all of the return instructions, turning them into unconditional
// branches to the merge point now, and adding entries to the PHI node as
// appropriate.
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
ReturnInst *RI = Returns[i];
if (PHI) {
assert(RI->getReturnValue() && "Ret should have value!");
assert(RI->getReturnValue()->getType() == PHI->getType() &&
"Ret value not consistent in function!");
PHI->addIncoming(RI->getReturnValue(), RI->getParent());
}
// Add a branch to the merge point where the PHI node lives if it exists.
new BranchInst(AfterCallBB, RI);
// Delete the return instruction now
RI->getParent()->getInstList().erase(RI);
}
} else if (!Returns.empty()) {
// Otherwise, if there is exactly one return value, just replace anything
// using the return value of the call with the computed value.
if (!TheCall->use_empty())
TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
// Add a branch to the merge point where the PHI node lives if it exists.
new BranchInst(AfterCallBB, Returns[0]);
// Delete the return instruction now
Returns[0]->getParent()->getInstList().erase(Returns[0]);
}
// Since we are now done with the Call/Invoke, we can delete it.
TheCall->getParent()->getInstList().erase(TheCall);
// We should always be able to fold the entry block of the function into the
// single predecessor of the block...
assert(cast<BranchInst>(Br)->isUnconditional() &&"splitBasicBlock broken!");
BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
SimplifyCFG(CalleeEntry);
// Okay, continue the CFG cleanup. It's often the case that there is only a
// single return instruction in the callee function. If this is the case,
// then we have an unconditional branch from the return block to the
// 'AfterCallBB'. Check for this case, and eliminate the branch is possible.
SimplifyCFG(AfterCallBB);
return true;
}