llvm-6502/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp

170 lines
6.1 KiB
C++
Raw Normal View History

//===- SectionMemoryManager.cpp - Memory manager for MCJIT/RtDyld *- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the section-based memory manager used by the MCJIT
// execution engine and RuntimeDyld
//
//===----------------------------------------------------------------------===//
#include "llvm/Config/config.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/Support/MathExtras.h"
namespace llvm {
uint8_t *SectionMemoryManager::allocateDataSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID,
bool IsReadOnly) {
if (IsReadOnly)
return allocateSection(RODataMem, Size, Alignment);
return allocateSection(RWDataMem, Size, Alignment);
}
uint8_t *SectionMemoryManager::allocateCodeSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID) {
return allocateSection(CodeMem, Size, Alignment);
}
uint8_t *SectionMemoryManager::allocateSection(MemoryGroup &MemGroup,
uintptr_t Size,
unsigned Alignment) {
if (!Alignment)
Alignment = 16;
assert(!(Alignment & (Alignment - 1)) && "Alignment must be a power of two.");
uintptr_t RequiredSize = Alignment * ((Size + Alignment - 1)/Alignment + 1);
uintptr_t Addr = 0;
// Look in the list of free memory regions and use a block there if one
// is available.
for (int i = 0, e = MemGroup.FreeMem.size(); i != e; ++i) {
sys::MemoryBlock &MB = MemGroup.FreeMem[i];
if (MB.size() >= RequiredSize) {
Addr = (uintptr_t)MB.base();
uintptr_t EndOfBlock = Addr + MB.size();
// Align the address.
Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
// Store cutted free memory block.
MemGroup.FreeMem[i] = sys::MemoryBlock((void*)(Addr + Size),
EndOfBlock - Addr - Size);
return (uint8_t*)Addr;
}
}
// No pre-allocated free block was large enough. Allocate a new memory region.
// Note that all sections get allocated as read-write. The permissions will
// be updated later based on memory group.
//
// FIXME: It would be useful to define a default allocation size (or add
// it as a constructor parameter) to minimize the number of allocations.
//
// FIXME: Initialize the Near member for each memory group to avoid
// interleaving.
error_code ec;
sys::MemoryBlock MB = sys::Memory::allocateMappedMemory(RequiredSize,
&MemGroup.Near,
sys::Memory::MF_READ |
sys::Memory::MF_WRITE,
ec);
if (ec) {
// FIXME: Add error propogation to the interface.
return NULL;
}
// Save this address as the basis for our next request
MemGroup.Near = MB;
MemGroup.AllocatedMem.push_back(MB);
Addr = (uintptr_t)MB.base();
uintptr_t EndOfBlock = Addr + MB.size();
// Align the address.
Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
// The allocateMappedMemory may allocate much more memory than we need. In
// this case, we store the unused memory as a free memory block.
unsigned FreeSize = EndOfBlock-Addr-Size;
if (FreeSize > 16)
MemGroup.FreeMem.push_back(sys::MemoryBlock((void*)(Addr + Size), FreeSize));
// Return aligned address
return (uint8_t*)Addr;
}
bool SectionMemoryManager::finalizeMemory(std::string *ErrMsg)
{
// FIXME: Should in-progress permissions be reverted if an error occurs?
error_code ec;
// Make code memory executable.
ec = applyMemoryGroupPermissions(CodeMem,
sys::Memory::MF_READ | sys::Memory::MF_EXEC);
if (ec) {
if (ErrMsg) {
*ErrMsg = ec.message();
}
return true;
}
// Make read-only data memory read-only.
ec = applyMemoryGroupPermissions(RODataMem,
sys::Memory::MF_READ | sys::Memory::MF_EXEC);
if (ec) {
if (ErrMsg) {
*ErrMsg = ec.message();
}
return true;
}
// Read-write data memory already has the correct permissions
// Some platforms with separate data cache and instruction cache require
// explicit cache flush, otherwise JIT code manipulations (like resolved
// relocations) will get to the data cache but not to the instruction cache.
invalidateInstructionCache();
return false;
}
error_code SectionMemoryManager::applyMemoryGroupPermissions(MemoryGroup &MemGroup,
unsigned Permissions) {
for (int i = 0, e = MemGroup.AllocatedMem.size(); i != e; ++i) {
error_code ec;
ec = sys::Memory::protectMappedMemory(MemGroup.AllocatedMem[i],
Permissions);
if (ec) {
return ec;
}
}
return error_code::success();
}
void SectionMemoryManager::invalidateInstructionCache() {
for (int i = 0, e = CodeMem.AllocatedMem.size(); i != e; ++i)
sys::Memory::InvalidateInstructionCache(CodeMem.AllocatedMem[i].base(),
CodeMem.AllocatedMem[i].size());
}
SectionMemoryManager::~SectionMemoryManager() {
for (unsigned i = 0, e = CodeMem.AllocatedMem.size(); i != e; ++i)
sys::Memory::releaseMappedMemory(CodeMem.AllocatedMem[i]);
for (unsigned i = 0, e = RWDataMem.AllocatedMem.size(); i != e; ++i)
sys::Memory::releaseMappedMemory(RWDataMem.AllocatedMem[i]);
for (unsigned i = 0, e = RODataMem.AllocatedMem.size(); i != e; ++i)
sys::Memory::releaseMappedMemory(RODataMem.AllocatedMem[i]);
}
} // namespace llvm