2006-01-21 02:32:06 +00:00
|
|
|
//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
2007-12-29 19:59:42 +00:00
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
2006-01-21 02:32:06 +00:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements the ScheduleDAG class, which is used as the common
|
2012-03-07 00:18:08 +00:00
|
|
|
// base class for instruction schedulers. This encapsulates the scheduling DAG,
|
|
|
|
// which is shared between SelectionDAG and MachineInstr scheduling.
|
2006-01-21 02:32:06 +00:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
|
|
|
|
#define LLVM_CODEGEN_SCHEDULEDAG_H
|
|
|
|
|
2008-11-25 00:52:40 +00:00
|
|
|
#include "llvm/ADT/BitVector.h"
|
2007-08-28 20:32:58 +00:00
|
|
|
#include "llvm/ADT/GraphTraits.h"
|
2008-12-09 22:54:47 +00:00
|
|
|
#include "llvm/ADT/PointerIntPair.h"
|
2012-12-03 17:02:12 +00:00
|
|
|
#include "llvm/ADT/SmallVector.h"
|
2013-02-20 00:26:25 +00:00
|
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
2012-12-03 17:02:12 +00:00
|
|
|
#include "llvm/Target/TargetLowering.h"
|
2006-05-11 23:55:42 +00:00
|
|
|
|
2006-01-21 02:32:06 +00:00
|
|
|
namespace llvm {
|
2009-10-09 23:33:48 +00:00
|
|
|
class AliasAnalysis;
|
2009-03-19 23:26:52 +00:00
|
|
|
class SUnit;
|
2006-01-21 02:32:06 +00:00
|
|
|
class MachineConstantPool;
|
2008-01-30 19:35:32 +00:00
|
|
|
class MachineFunction;
|
2007-12-31 04:13:23 +00:00
|
|
|
class MachineRegisterInfo;
|
2006-01-21 02:32:06 +00:00
|
|
|
class MachineInstr;
|
2012-11-06 07:10:38 +00:00
|
|
|
struct MCSchedClassDesc;
|
2008-02-10 18:45:23 +00:00
|
|
|
class TargetRegisterInfo;
|
2008-11-18 02:06:40 +00:00
|
|
|
class ScheduleDAG;
|
2008-11-19 23:18:57 +00:00
|
|
|
class SDNode;
|
2006-01-21 02:32:06 +00:00
|
|
|
class TargetInstrInfo;
|
2011-06-28 19:10:37 +00:00
|
|
|
class MCInstrDesc;
|
2006-01-21 02:32:06 +00:00
|
|
|
class TargetMachine;
|
2007-09-26 21:38:03 +00:00
|
|
|
class TargetRegisterClass;
|
2008-11-19 23:18:57 +00:00
|
|
|
template<class Graph> class GraphWriter;
|
2007-09-19 01:38:40 +00:00
|
|
|
|
2008-12-09 22:54:47 +00:00
|
|
|
/// SDep - Scheduling dependency. This represents one direction of an
|
|
|
|
/// edge in the scheduling DAG.
|
|
|
|
class SDep {
|
|
|
|
public:
|
|
|
|
/// Kind - These are the different kinds of scheduling dependencies.
|
|
|
|
enum Kind {
|
|
|
|
Data, ///< Regular data dependence (aka true-dependence).
|
|
|
|
Anti, ///< A register anti-dependedence (aka WAR).
|
|
|
|
Output, ///< A register output-dependence (aka WAW).
|
|
|
|
Order ///< Any other ordering dependency.
|
|
|
|
};
|
|
|
|
|
2013-03-01 00:19:12 +00:00
|
|
|
// Strong dependencies must be respected by the scheduler. Artificial
|
|
|
|
// dependencies may be removed only if they are redundant with another
|
|
|
|
// strong depedence.
|
|
|
|
//
|
|
|
|
// Weak dependencies may be violated by the scheduling strategy, but only if
|
|
|
|
// the strategy can prove it is correct to do so.
|
|
|
|
//
|
|
|
|
// Strong OrderKinds must occur before "Weak".
|
|
|
|
// Weak OrderKinds must occur after "Weak".
|
2012-11-06 03:13:46 +00:00
|
|
|
enum OrderKind {
|
|
|
|
Barrier, ///< An unknown scheduling barrier.
|
|
|
|
MayAliasMem, ///< Nonvolatile load/Store instructions that may alias.
|
|
|
|
MustAliasMem, ///< Nonvolatile load/Store instructions that must alias.
|
2013-03-01 00:19:12 +00:00
|
|
|
Artificial, ///< Arbitrary strong DAG edge (no real dependence).
|
|
|
|
Weak, ///< Arbitrary weak DAG edge.
|
2012-11-12 19:28:57 +00:00
|
|
|
Cluster ///< Weak DAG edge linking a chain of clustered instrs.
|
2012-11-06 03:13:46 +00:00
|
|
|
};
|
|
|
|
|
2008-12-09 22:54:47 +00:00
|
|
|
private:
|
|
|
|
/// Dep - A pointer to the depending/depended-on SUnit, and an enum
|
|
|
|
/// indicating the kind of the dependency.
|
|
|
|
PointerIntPair<SUnit *, 2, Kind> Dep;
|
|
|
|
|
|
|
|
/// Contents - A union discriminated by the dependence kind.
|
|
|
|
union {
|
|
|
|
/// Reg - For Data, Anti, and Output dependencies, the associated
|
|
|
|
/// register. For Data dependencies that don't currently have a register
|
|
|
|
/// assigned, this is set to zero.
|
|
|
|
unsigned Reg;
|
|
|
|
|
|
|
|
/// Order - Additional information about Order dependencies.
|
2012-11-06 03:13:46 +00:00
|
|
|
unsigned OrdKind; // enum OrderKind
|
2008-12-09 22:54:47 +00:00
|
|
|
} Contents;
|
|
|
|
|
|
|
|
/// Latency - The time associated with this edge. Often this is just
|
|
|
|
/// the value of the Latency field of the predecessor, however advanced
|
|
|
|
/// models may provide additional information about specific edges.
|
|
|
|
unsigned Latency;
|
|
|
|
|
|
|
|
public:
|
|
|
|
/// SDep - Construct a null SDep. This is only for use by container
|
|
|
|
/// classes which require default constructors. SUnits may not
|
|
|
|
/// have null SDep edges.
|
|
|
|
SDep() : Dep(0, Data) {}
|
|
|
|
|
|
|
|
/// SDep - Construct an SDep with the specified values.
|
2012-11-06 03:13:46 +00:00
|
|
|
SDep(SUnit *S, Kind kind, unsigned Reg)
|
|
|
|
: Dep(S, kind), Contents() {
|
2008-12-09 22:54:47 +00:00
|
|
|
switch (kind) {
|
2012-11-06 03:13:46 +00:00
|
|
|
default:
|
|
|
|
llvm_unreachable("Reg given for non-register dependence!");
|
2008-12-09 22:54:47 +00:00
|
|
|
case Anti:
|
|
|
|
case Output:
|
|
|
|
assert(Reg != 0 &&
|
|
|
|
"SDep::Anti and SDep::Output must use a non-zero Reg!");
|
|
|
|
Contents.Reg = Reg;
|
2012-11-06 03:13:46 +00:00
|
|
|
Latency = 0;
|
2008-12-09 22:54:47 +00:00
|
|
|
break;
|
2012-11-06 03:13:46 +00:00
|
|
|
case Data:
|
|
|
|
Contents.Reg = Reg;
|
|
|
|
Latency = 1;
|
2008-12-09 22:54:47 +00:00
|
|
|
break;
|
|
|
|
}
|
2012-11-06 03:13:46 +00:00
|
|
|
}
|
|
|
|
SDep(SUnit *S, OrderKind kind)
|
2013-06-15 04:49:57 +00:00
|
|
|
: Dep(S, Order), Contents(), Latency(0) {
|
2012-11-06 03:13:46 +00:00
|
|
|
Contents.OrdKind = kind;
|
2008-12-09 22:54:47 +00:00
|
|
|
}
|
|
|
|
|
2012-06-13 02:39:00 +00:00
|
|
|
/// Return true if the specified SDep is equivalent except for latency.
|
|
|
|
bool overlaps(const SDep &Other) const {
|
|
|
|
if (Dep != Other.Dep) return false;
|
2008-12-09 22:54:47 +00:00
|
|
|
switch (Dep.getInt()) {
|
|
|
|
case Data:
|
|
|
|
case Anti:
|
|
|
|
case Output:
|
|
|
|
return Contents.Reg == Other.Contents.Reg;
|
|
|
|
case Order:
|
2012-11-06 03:13:46 +00:00
|
|
|
return Contents.OrdKind == Other.Contents.OrdKind;
|
2008-12-09 22:54:47 +00:00
|
|
|
}
|
2012-02-06 08:17:43 +00:00
|
|
|
llvm_unreachable("Invalid dependency kind!");
|
2008-12-09 22:54:47 +00:00
|
|
|
}
|
|
|
|
|
2012-06-13 02:39:00 +00:00
|
|
|
bool operator==(const SDep &Other) const {
|
2013-06-15 04:49:57 +00:00
|
|
|
return overlaps(Other) && Latency == Other.Latency;
|
2012-06-13 02:39:00 +00:00
|
|
|
}
|
|
|
|
|
2008-12-09 22:54:47 +00:00
|
|
|
bool operator!=(const SDep &Other) const {
|
|
|
|
return !operator==(Other);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// getLatency - Return the latency value for this edge, which roughly
|
|
|
|
/// means the minimum number of cycles that must elapse between the
|
|
|
|
/// predecessor and the successor, given that they have this edge
|
|
|
|
/// between them.
|
|
|
|
unsigned getLatency() const {
|
|
|
|
return Latency;
|
|
|
|
}
|
|
|
|
|
2009-08-13 16:05:04 +00:00
|
|
|
/// setLatency - Set the latency for this edge.
|
|
|
|
void setLatency(unsigned Lat) {
|
|
|
|
Latency = Lat;
|
|
|
|
}
|
|
|
|
|
2008-12-09 22:54:47 +00:00
|
|
|
//// getSUnit - Return the SUnit to which this edge points.
|
|
|
|
SUnit *getSUnit() const {
|
|
|
|
return Dep.getPointer();
|
|
|
|
}
|
|
|
|
|
|
|
|
//// setSUnit - Assign the SUnit to which this edge points.
|
|
|
|
void setSUnit(SUnit *SU) {
|
|
|
|
Dep.setPointer(SU);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// getKind - Return an enum value representing the kind of the dependence.
|
|
|
|
Kind getKind() const {
|
|
|
|
return Dep.getInt();
|
|
|
|
}
|
|
|
|
|
|
|
|
/// isCtrl - Shorthand for getKind() != SDep::Data.
|
|
|
|
bool isCtrl() const {
|
|
|
|
return getKind() != Data;
|
|
|
|
}
|
|
|
|
|
2008-12-22 21:06:56 +00:00
|
|
|
/// isNormalMemory - Test if this is an Order dependence between two
|
|
|
|
/// memory accesses where both sides of the dependence access memory
|
|
|
|
/// in non-volatile and fully modeled ways.
|
|
|
|
bool isNormalMemory() const {
|
2012-11-06 03:13:46 +00:00
|
|
|
return getKind() == Order && (Contents.OrdKind == MayAliasMem
|
|
|
|
|| Contents.OrdKind == MustAliasMem);
|
2008-12-22 21:06:56 +00:00
|
|
|
}
|
|
|
|
|
2013-12-12 00:19:07 +00:00
|
|
|
/// isBarrier - Test if this is an Order dependence that is marked
|
|
|
|
/// as a barrier.
|
|
|
|
bool isBarrier() const {
|
|
|
|
return getKind() == Order && Contents.OrdKind == Barrier;
|
|
|
|
}
|
|
|
|
|
2008-12-09 22:54:47 +00:00
|
|
|
/// isMustAlias - Test if this is an Order dependence that is marked
|
|
|
|
/// as "must alias", meaning that the SUnits at either end of the edge
|
|
|
|
/// have a memory dependence on a known memory location.
|
|
|
|
bool isMustAlias() const {
|
2012-11-06 03:13:46 +00:00
|
|
|
return getKind() == Order && Contents.OrdKind == MustAliasMem;
|
2008-12-09 22:54:47 +00:00
|
|
|
}
|
|
|
|
|
2012-11-12 19:28:57 +00:00
|
|
|
/// isWeak - Test if this a weak dependence. Weak dependencies are
|
|
|
|
/// considered DAG edges for height computation and other heuristics, but do
|
|
|
|
/// not force ordering. Breaking a weak edge may require the scheduler to
|
|
|
|
/// compensate, for example by inserting a copy.
|
|
|
|
bool isWeak() const {
|
2013-03-01 00:19:12 +00:00
|
|
|
return getKind() == Order && Contents.OrdKind >= Weak;
|
2012-11-12 19:28:57 +00:00
|
|
|
}
|
|
|
|
|
2008-12-16 00:48:53 +00:00
|
|
|
/// isArtificial - Test if this is an Order dependence that is marked
|
|
|
|
/// as "artificial", meaning it isn't necessary for correctness.
|
|
|
|
bool isArtificial() const {
|
2012-11-06 03:13:46 +00:00
|
|
|
return getKind() == Order && Contents.OrdKind == Artificial;
|
2008-12-16 00:48:53 +00:00
|
|
|
}
|
|
|
|
|
2012-11-12 19:28:57 +00:00
|
|
|
/// isCluster - Test if this is an Order dependence that is marked
|
|
|
|
/// as "cluster", meaning it is artificial and wants to be adjacent.
|
|
|
|
bool isCluster() const {
|
|
|
|
return getKind() == Order && Contents.OrdKind == Cluster;
|
|
|
|
}
|
|
|
|
|
2008-12-09 22:54:47 +00:00
|
|
|
/// isAssignedRegDep - Test if this is a Data dependence that is
|
|
|
|
/// associated with a register.
|
|
|
|
bool isAssignedRegDep() const {
|
|
|
|
return getKind() == Data && Contents.Reg != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// getReg - Return the register associated with this edge. This is
|
|
|
|
/// only valid on Data, Anti, and Output edges. On Data edges, this
|
|
|
|
/// value may be zero, meaning there is no associated register.
|
|
|
|
unsigned getReg() const {
|
|
|
|
assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
|
|
|
|
"getReg called on non-register dependence edge!");
|
|
|
|
return Contents.Reg;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// setReg - Assign the associated register for this edge. This is
|
|
|
|
/// only valid on Data, Anti, and Output edges. On Anti and Output
|
|
|
|
/// edges, this value must not be zero. On Data edges, the value may
|
|
|
|
/// be zero, which would mean that no specific register is associated
|
|
|
|
/// with this edge.
|
|
|
|
void setReg(unsigned Reg) {
|
|
|
|
assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
|
|
|
|
"setReg called on non-register dependence edge!");
|
|
|
|
assert((getKind() != Anti || Reg != 0) &&
|
|
|
|
"SDep::Anti edge cannot use the zero register!");
|
|
|
|
assert((getKind() != Output || Reg != 0) &&
|
|
|
|
"SDep::Output edge cannot use the zero register!");
|
|
|
|
Contents.Reg = Reg;
|
|
|
|
}
|
2007-09-19 01:38:40 +00:00
|
|
|
};
|
|
|
|
|
2010-11-25 17:50:19 +00:00
|
|
|
template <>
|
|
|
|
struct isPodLike<SDep> { static const bool value = true; };
|
|
|
|
|
2008-11-19 23:18:57 +00:00
|
|
|
/// SUnit - Scheduling unit. This is a node in the scheduling DAG.
|
2009-02-14 16:06:42 +00:00
|
|
|
class SUnit {
|
2008-11-13 21:36:12 +00:00
|
|
|
private:
|
2014-03-02 03:20:38 +00:00
|
|
|
enum : unsigned { BoundaryID = ~0u };
|
2013-01-25 06:52:30 +00:00
|
|
|
|
2006-05-11 23:55:42 +00:00
|
|
|
SDNode *Node; // Representative node.
|
2008-11-14 00:06:09 +00:00
|
|
|
MachineInstr *Instr; // Alternatively, a MachineInstr.
|
2008-11-13 21:36:12 +00:00
|
|
|
public:
|
2008-06-21 15:52:51 +00:00
|
|
|
SUnit *OrigNode; // If not this, the node from which
|
|
|
|
// this node was cloned.
|
2012-02-22 06:08:11 +00:00
|
|
|
// (SD scheduling only)
|
2010-12-24 04:28:06 +00:00
|
|
|
|
2012-11-06 07:10:38 +00:00
|
|
|
const MCSchedClassDesc *SchedClass; // NULL or resolved SchedClass.
|
|
|
|
|
2010-12-24 04:28:06 +00:00
|
|
|
// Preds/Succs - The SUnits before/after us in the graph.
|
2007-09-19 01:38:40 +00:00
|
|
|
SmallVector<SDep, 4> Preds; // All sunit predecessors.
|
|
|
|
SmallVector<SDep, 4> Succs; // All sunit successors.
|
|
|
|
|
2013-07-03 05:01:24 +00:00
|
|
|
typedef SmallVectorImpl<SDep>::iterator pred_iterator;
|
|
|
|
typedef SmallVectorImpl<SDep>::iterator succ_iterator;
|
|
|
|
typedef SmallVectorImpl<SDep>::const_iterator const_pred_iterator;
|
|
|
|
typedef SmallVectorImpl<SDep>::const_iterator const_succ_iterator;
|
2010-05-20 23:26:43 +00:00
|
|
|
|
2007-09-25 01:54:36 +00:00
|
|
|
unsigned NodeNum; // Entry # of node in the node vector.
|
2008-04-29 09:07:59 +00:00
|
|
|
unsigned NodeQueueId; // Queue id of node.
|
2009-09-30 20:15:38 +00:00
|
|
|
unsigned NumPreds; // # of SDep::Data preds.
|
|
|
|
unsigned NumSuccs; // # of SDep::Data sucss.
|
|
|
|
unsigned NumPredsLeft; // # of preds not scheduled.
|
|
|
|
unsigned NumSuccsLeft; // # of succs not scheduled.
|
2012-11-12 19:28:57 +00:00
|
|
|
unsigned WeakPredsLeft; // # of weak preds not scheduled.
|
|
|
|
unsigned WeakSuccsLeft; // # of weak succs not scheduled.
|
2011-02-04 03:18:17 +00:00
|
|
|
unsigned short NumRegDefsLeft; // # of reg defs with no scheduled use.
|
2010-11-25 17:50:19 +00:00
|
|
|
unsigned short Latency; // Node latency.
|
2011-04-07 19:54:57 +00:00
|
|
|
bool isVRegCycle : 1; // May use and def the same vreg.
|
2010-11-03 00:45:17 +00:00
|
|
|
bool isCall : 1; // Is a function call.
|
2011-04-26 21:31:35 +00:00
|
|
|
bool isCallOp : 1; // Is a function call operand.
|
2006-05-11 23:55:42 +00:00
|
|
|
bool isTwoAddress : 1; // Is a two-address instruction.
|
2006-05-12 01:58:24 +00:00
|
|
|
bool isCommutable : 1; // Is a commutable instruction.
|
2013-04-13 06:07:40 +00:00
|
|
|
bool hasPhysRegUses : 1; // Has physreg uses.
|
2007-10-05 01:39:18 +00:00
|
|
|
bool hasPhysRegDefs : 1; // Has physreg defs that are being used.
|
2009-03-23 16:10:52 +00:00
|
|
|
bool hasPhysRegClobbers : 1; // Has any physreg defs, used or not.
|
2006-05-11 23:55:42 +00:00
|
|
|
bool isPending : 1; // True once pending.
|
|
|
|
bool isAvailable : 1; // True once available.
|
|
|
|
bool isScheduled : 1; // True once scheduled.
|
2008-12-16 03:35:01 +00:00
|
|
|
bool isScheduleHigh : 1; // True if preferable to schedule high.
|
2011-04-14 05:15:06 +00:00
|
|
|
bool isScheduleLow : 1; // True if preferable to schedule low.
|
2009-01-16 20:57:18 +00:00
|
|
|
bool isCloned : 1; // True if this node has been cloned.
|
2013-12-05 17:56:02 +00:00
|
|
|
bool isUnbuffered : 1; // Uses an unbuffered resource.
|
|
|
|
bool hasReservedResource : 1; // Uses a reserved resource.
|
2010-05-20 23:26:43 +00:00
|
|
|
Sched::Preference SchedulingPref; // Scheduling preference.
|
2010-05-19 22:57:06 +00:00
|
|
|
|
2008-12-16 03:25:46 +00:00
|
|
|
private:
|
|
|
|
bool isDepthCurrent : 1; // True if Depth is current.
|
|
|
|
bool isHeightCurrent : 1; // True if Height is current.
|
|
|
|
unsigned Depth; // Node depth.
|
|
|
|
unsigned Height; // Node height.
|
|
|
|
public:
|
2012-06-05 21:11:27 +00:00
|
|
|
unsigned TopReadyCycle; // Cycle relative to start when node is ready.
|
|
|
|
unsigned BotReadyCycle; // Cycle relative to end when node is ready.
|
|
|
|
|
2007-09-26 21:38:03 +00:00
|
|
|
const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
|
|
|
|
const TargetRegisterClass *CopySrcRC;
|
2010-12-24 04:28:06 +00:00
|
|
|
|
2008-11-14 00:06:09 +00:00
|
|
|
/// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
|
|
|
|
/// an SDNode and any nodes flagged to it.
|
2006-05-11 23:55:42 +00:00
|
|
|
SUnit(SDNode *node, unsigned nodenum)
|
2012-11-06 07:10:38 +00:00
|
|
|
: Node(node), Instr(0), OrigNode(0), SchedClass(0), NodeNum(nodenum),
|
2010-11-25 17:50:19 +00:00
|
|
|
NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
|
2012-11-12 19:28:57 +00:00
|
|
|
NumSuccsLeft(0), WeakPredsLeft(0), WeakSuccsLeft(0), NumRegDefsLeft(0),
|
|
|
|
Latency(0), isVRegCycle(false), isCall(false), isCallOp(false),
|
2013-04-13 06:07:40 +00:00
|
|
|
isTwoAddress(false), isCommutable(false), hasPhysRegUses(false),
|
|
|
|
hasPhysRegDefs(false), hasPhysRegClobbers(false), isPending(false),
|
|
|
|
isAvailable(false), isScheduled(false), isScheduleHigh(false),
|
2013-12-05 17:55:58 +00:00
|
|
|
isScheduleLow(false), isCloned(false), isUnbuffered(false),
|
2013-12-05 17:56:02 +00:00
|
|
|
hasReservedResource(false), SchedulingPref(Sched::None),
|
|
|
|
isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
|
|
|
|
TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
|
2008-11-14 00:06:09 +00:00
|
|
|
|
|
|
|
/// SUnit - Construct an SUnit for post-regalloc scheduling to represent
|
|
|
|
/// a MachineInstr.
|
|
|
|
SUnit(MachineInstr *instr, unsigned nodenum)
|
2012-11-06 07:10:38 +00:00
|
|
|
: Node(0), Instr(instr), OrigNode(0), SchedClass(0), NodeNum(nodenum),
|
2010-11-25 17:50:19 +00:00
|
|
|
NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
|
2012-11-12 19:28:57 +00:00
|
|
|
NumSuccsLeft(0), WeakPredsLeft(0), WeakSuccsLeft(0), NumRegDefsLeft(0),
|
|
|
|
Latency(0), isVRegCycle(false), isCall(false), isCallOp(false),
|
2013-04-13 06:07:40 +00:00
|
|
|
isTwoAddress(false), isCommutable(false), hasPhysRegUses(false),
|
|
|
|
hasPhysRegDefs(false), hasPhysRegClobbers(false), isPending(false),
|
|
|
|
isAvailable(false), isScheduled(false), isScheduleHigh(false),
|
2013-12-05 17:55:58 +00:00
|
|
|
isScheduleLow(false), isCloned(false), isUnbuffered(false),
|
2013-12-05 17:56:02 +00:00
|
|
|
hasReservedResource(false), SchedulingPref(Sched::None),
|
|
|
|
isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
|
|
|
|
TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
|
2007-09-25 01:54:36 +00:00
|
|
|
|
2009-02-10 23:27:53 +00:00
|
|
|
/// SUnit - Construct a placeholder SUnit.
|
|
|
|
SUnit()
|
2013-01-25 06:52:30 +00:00
|
|
|
: Node(0), Instr(0), OrigNode(0), SchedClass(0), NodeNum(BoundaryID),
|
2010-11-25 17:50:19 +00:00
|
|
|
NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
|
2012-11-12 19:28:57 +00:00
|
|
|
NumSuccsLeft(0), WeakPredsLeft(0), WeakSuccsLeft(0), NumRegDefsLeft(0),
|
|
|
|
Latency(0), isVRegCycle(false), isCall(false), isCallOp(false),
|
2013-04-13 06:07:40 +00:00
|
|
|
isTwoAddress(false), isCommutable(false), hasPhysRegUses(false),
|
|
|
|
hasPhysRegDefs(false), hasPhysRegClobbers(false), isPending(false),
|
|
|
|
isAvailable(false), isScheduled(false), isScheduleHigh(false),
|
2013-12-05 17:55:58 +00:00
|
|
|
isScheduleLow(false), isCloned(false), isUnbuffered(false),
|
2013-12-05 17:56:02 +00:00
|
|
|
hasReservedResource(false), SchedulingPref(Sched::None),
|
|
|
|
isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
|
|
|
|
TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
|
2009-02-10 23:27:53 +00:00
|
|
|
|
2013-01-25 06:52:30 +00:00
|
|
|
/// \brief Boundary nodes are placeholders for the boundary of the
|
|
|
|
/// scheduling region.
|
|
|
|
///
|
|
|
|
/// BoundaryNodes can have DAG edges, including Data edges, but they do not
|
|
|
|
/// correspond to schedulable entities (e.g. instructions) and do not have a
|
|
|
|
/// valid ID. Consequently, always check for boundary nodes before accessing
|
|
|
|
/// an assoicative data structure keyed on node ID.
|
|
|
|
bool isBoundaryNode() const { return NodeNum == BoundaryID; };
|
|
|
|
|
2008-11-13 21:36:12 +00:00
|
|
|
/// setNode - Assign the representative SDNode for this SUnit.
|
2008-11-14 00:06:09 +00:00
|
|
|
/// This may be used during pre-regalloc scheduling.
|
|
|
|
void setNode(SDNode *N) {
|
|
|
|
assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
|
|
|
|
Node = N;
|
|
|
|
}
|
2008-11-13 21:36:12 +00:00
|
|
|
|
|
|
|
/// getNode - Return the representative SDNode for this SUnit.
|
2008-11-14 00:06:09 +00:00
|
|
|
/// This may be used during pre-regalloc scheduling.
|
|
|
|
SDNode *getNode() const {
|
|
|
|
assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
|
|
|
|
return Node;
|
|
|
|
}
|
|
|
|
|
Various bits of framework needed for precise machine-level selection
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
2010-12-24 05:03:26 +00:00
|
|
|
/// isInstr - Return true if this SUnit refers to a machine instruction as
|
|
|
|
/// opposed to an SDNode.
|
2010-12-24 07:10:19 +00:00
|
|
|
bool isInstr() const { return Instr; }
|
Various bits of framework needed for precise machine-level selection
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
2010-12-24 05:03:26 +00:00
|
|
|
|
2008-11-14 00:06:09 +00:00
|
|
|
/// setInstr - Assign the instruction for the SUnit.
|
|
|
|
/// This may be used during post-regalloc scheduling.
|
|
|
|
void setInstr(MachineInstr *MI) {
|
|
|
|
assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
|
|
|
|
Instr = MI;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// getInstr - Return the representative MachineInstr for this SUnit.
|
|
|
|
/// This may be used during post-regalloc scheduling.
|
|
|
|
MachineInstr *getInstr() const {
|
|
|
|
assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
|
|
|
|
return Instr;
|
|
|
|
}
|
2008-11-13 21:36:12 +00:00
|
|
|
|
2008-12-09 22:54:47 +00:00
|
|
|
/// addPred - This adds the specified edge as a pred of the current node if
|
2008-11-21 02:27:52 +00:00
|
|
|
/// not already. It also adds the current node as a successor of the
|
2008-12-16 01:00:55 +00:00
|
|
|
/// specified node.
|
2012-11-12 19:28:57 +00:00
|
|
|
bool addPred(const SDep &D, bool Required = true);
|
2006-08-17 00:09:56 +00:00
|
|
|
|
2008-12-09 22:54:47 +00:00
|
|
|
/// removePred - This removes the specified edge as a pred of the current
|
|
|
|
/// node if it exists. It also removes the current node as a successor of
|
2008-12-16 01:00:55 +00:00
|
|
|
/// the specified node.
|
2008-12-16 01:05:52 +00:00
|
|
|
void removePred(const SDep &D);
|
2007-09-25 01:54:36 +00:00
|
|
|
|
2008-12-17 04:24:23 +00:00
|
|
|
/// getDepth - Return the depth of this node, which is the length of the
|
2011-03-07 22:48:16 +00:00
|
|
|
/// maximum path up to any node which has no predecessors.
|
2009-11-20 19:32:48 +00:00
|
|
|
unsigned getDepth() const {
|
2010-12-24 04:28:06 +00:00
|
|
|
if (!isDepthCurrent)
|
2009-11-20 19:32:48 +00:00
|
|
|
const_cast<SUnit *>(this)->ComputeDepth();
|
2008-12-16 03:25:46 +00:00
|
|
|
return Depth;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// getHeight - Return the height of this node, which is the length of the
|
2011-03-07 22:48:16 +00:00
|
|
|
/// maximum path down to any node which has no successors.
|
2009-11-20 19:32:48 +00:00
|
|
|
unsigned getHeight() const {
|
2010-12-24 04:28:06 +00:00
|
|
|
if (!isHeightCurrent)
|
2009-11-20 19:32:48 +00:00
|
|
|
const_cast<SUnit *>(this)->ComputeHeight();
|
2008-12-16 03:25:46 +00:00
|
|
|
return Height;
|
|
|
|
}
|
|
|
|
|
2009-11-03 20:57:50 +00:00
|
|
|
/// setDepthToAtLeast - If NewDepth is greater than this node's
|
|
|
|
/// depth value, set it to be the new depth value. This also
|
2009-11-20 19:32:48 +00:00
|
|
|
/// recursively marks successor nodes dirty.
|
|
|
|
void setDepthToAtLeast(unsigned NewDepth);
|
2008-12-16 03:25:46 +00:00
|
|
|
|
2009-11-03 20:57:50 +00:00
|
|
|
/// setDepthToAtLeast - If NewDepth is greater than this node's
|
|
|
|
/// depth value, set it to be the new height value. This also
|
2009-11-20 19:32:48 +00:00
|
|
|
/// recursively marks predecessor nodes dirty.
|
|
|
|
void setHeightToAtLeast(unsigned NewHeight);
|
2008-12-16 03:25:46 +00:00
|
|
|
|
|
|
|
/// setDepthDirty - Set a flag in this node to indicate that its
|
|
|
|
/// stored Depth value will require recomputation the next time
|
|
|
|
/// getDepth() is called.
|
|
|
|
void setDepthDirty();
|
|
|
|
|
|
|
|
/// setHeightDirty - Set a flag in this node to indicate that its
|
|
|
|
/// stored Height value will require recomputation the next time
|
|
|
|
/// getHeight() is called.
|
|
|
|
void setHeightDirty();
|
|
|
|
|
|
|
|
/// isPred - Test if node N is a predecessor of this node.
|
2007-09-25 01:54:36 +00:00
|
|
|
bool isPred(SUnit *N) {
|
2008-05-05 18:30:58 +00:00
|
|
|
for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
|
2008-12-09 22:54:47 +00:00
|
|
|
if (Preds[i].getSUnit() == N)
|
2007-09-25 01:54:36 +00:00
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
2010-12-24 04:28:06 +00:00
|
|
|
|
2008-12-16 03:25:46 +00:00
|
|
|
/// isSucc - Test if node N is a successor of this node.
|
2007-09-25 01:54:36 +00:00
|
|
|
bool isSucc(SUnit *N) {
|
2008-05-05 18:30:58 +00:00
|
|
|
for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
|
2008-12-09 22:54:47 +00:00
|
|
|
if (Succs[i].getSUnit() == N)
|
2007-09-25 01:54:36 +00:00
|
|
|
return true;
|
|
|
|
return false;
|
2006-08-17 00:09:56 +00:00
|
|
|
}
|
2010-05-20 23:26:43 +00:00
|
|
|
|
2012-03-14 04:00:41 +00:00
|
|
|
bool isTopReady() const {
|
|
|
|
return NumPredsLeft == 0;
|
|
|
|
}
|
|
|
|
bool isBottomReady() const {
|
|
|
|
return NumSuccsLeft == 0;
|
|
|
|
}
|
|
|
|
|
2013-01-24 02:09:55 +00:00
|
|
|
/// \brief Order this node's predecessor edges such that the critical path
|
|
|
|
/// edge occurs first.
|
|
|
|
void biasCriticalPath();
|
|
|
|
|
2008-11-18 02:06:40 +00:00
|
|
|
void dump(const ScheduleDAG *G) const;
|
|
|
|
void dumpAll(const ScheduleDAG *G) const;
|
2008-11-19 21:32:03 +00:00
|
|
|
void print(raw_ostream &O, const ScheduleDAG *G) const;
|
2008-12-16 03:25:46 +00:00
|
|
|
|
|
|
|
private:
|
2009-11-20 19:32:48 +00:00
|
|
|
void ComputeDepth();
|
|
|
|
void ComputeHeight();
|
2006-05-11 23:55:42 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// SchedulingPriorityQueue - This interface is used to plug different
|
|
|
|
/// priorities computation algorithms into the list scheduler. It implements
|
2010-12-24 04:28:06 +00:00
|
|
|
/// the interface of a standard priority queue, where nodes are inserted in
|
2006-05-11 23:55:42 +00:00
|
|
|
/// arbitrary order and returned in priority order. The computation of the
|
|
|
|
/// priority and the representation of the queue are totally up to the
|
|
|
|
/// implementation to decide.
|
2010-12-24 04:28:06 +00:00
|
|
|
///
|
2006-05-11 23:55:42 +00:00
|
|
|
class SchedulingPriorityQueue {
|
2011-12-20 02:50:00 +00:00
|
|
|
virtual void anchor();
|
2010-05-20 06:13:19 +00:00
|
|
|
unsigned CurCycle;
|
Various bits of framework needed for precise machine-level selection
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
2010-12-24 05:03:26 +00:00
|
|
|
bool HasReadyFilter;
|
2006-05-11 23:55:42 +00:00
|
|
|
public:
|
Various bits of framework needed for precise machine-level selection
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
2010-12-24 05:03:26 +00:00
|
|
|
SchedulingPriorityQueue(bool rf = false):
|
|
|
|
CurCycle(0), HasReadyFilter(rf) {}
|
2006-05-11 23:55:42 +00:00
|
|
|
virtual ~SchedulingPriorityQueue() {}
|
2010-12-24 04:28:06 +00:00
|
|
|
|
Various bits of framework needed for precise machine-level selection
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
2010-12-24 05:03:26 +00:00
|
|
|
virtual bool isBottomUp() const = 0;
|
|
|
|
|
2008-06-21 19:18:17 +00:00
|
|
|
virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
|
2007-09-25 01:54:36 +00:00
|
|
|
virtual void addNode(const SUnit *SU) = 0;
|
|
|
|
virtual void updateNode(const SUnit *SU) = 0;
|
2006-05-11 23:55:42 +00:00
|
|
|
virtual void releaseState() = 0;
|
2007-09-25 01:54:36 +00:00
|
|
|
|
2006-05-11 23:55:42 +00:00
|
|
|
virtual bool empty() const = 0;
|
Various bits of framework needed for precise machine-level selection
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
2010-12-24 05:03:26 +00:00
|
|
|
|
|
|
|
bool hasReadyFilter() const { return HasReadyFilter; }
|
|
|
|
|
2011-02-04 03:18:17 +00:00
|
|
|
virtual bool tracksRegPressure() const { return false; }
|
|
|
|
|
2010-12-25 02:38:01 +00:00
|
|
|
virtual bool isReady(SUnit *) const {
|
Various bits of framework needed for precise machine-level selection
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
2010-12-24 05:03:26 +00:00
|
|
|
assert(!HasReadyFilter && "The ready filter must override isReady()");
|
|
|
|
return true;
|
|
|
|
}
|
2006-05-11 23:55:42 +00:00
|
|
|
virtual void push(SUnit *U) = 0;
|
2010-12-24 04:28:06 +00:00
|
|
|
|
2010-05-26 01:10:55 +00:00
|
|
|
void push_all(const std::vector<SUnit *> &Nodes) {
|
|
|
|
for (std::vector<SUnit *>::const_iterator I = Nodes.begin(),
|
|
|
|
E = Nodes.end(); I != E; ++I)
|
|
|
|
push(*I);
|
|
|
|
}
|
|
|
|
|
2006-05-11 23:55:42 +00:00
|
|
|
virtual SUnit *pop() = 0;
|
|
|
|
|
2007-09-25 01:54:36 +00:00
|
|
|
virtual void remove(SUnit *SU) = 0;
|
|
|
|
|
2010-12-25 02:38:01 +00:00
|
|
|
virtual void dump(ScheduleDAG *) const {}
|
Various bits of framework needed for precise machine-level selection
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
2010-12-24 05:03:26 +00:00
|
|
|
|
2012-03-07 23:00:49 +00:00
|
|
|
/// scheduledNode - As each node is scheduled, this method is invoked. This
|
2008-06-24 00:02:44 +00:00
|
|
|
/// allows the priority function to adjust the priority of related
|
|
|
|
/// unscheduled nodes, for example.
|
|
|
|
///
|
2012-03-07 23:00:49 +00:00
|
|
|
virtual void scheduledNode(SUnit *) {}
|
2007-09-25 01:54:36 +00:00
|
|
|
|
2012-03-07 23:00:49 +00:00
|
|
|
virtual void unscheduledNode(SUnit *) {}
|
2010-05-20 06:13:19 +00:00
|
|
|
|
|
|
|
void setCurCycle(unsigned Cycle) {
|
|
|
|
CurCycle = Cycle;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned getCurCycle() const {
|
|
|
|
return CurCycle;
|
2010-12-24 04:28:06 +00:00
|
|
|
}
|
2006-05-11 23:55:42 +00:00
|
|
|
};
|
|
|
|
|
2006-01-21 02:32:06 +00:00
|
|
|
class ScheduleDAG {
|
|
|
|
public:
|
|
|
|
const TargetMachine &TM; // Target processor
|
|
|
|
const TargetInstrInfo *TII; // Target instruction information
|
2008-02-10 18:45:23 +00:00
|
|
|
const TargetRegisterInfo *TRI; // Target processor register info
|
2009-01-15 19:20:50 +00:00
|
|
|
MachineFunction &MF; // Machine function
|
Experimental scheduler change to schedule / coalesce the copies added for function livein's. Take 2008-03-10-RegAllocInfLoop.ll, the schedule looks like this after these copies are inserted:
entry: 0x12049d0, LLVM BB @0x1201fd0, ID#0:
Live Ins: %EAX %EDX %ECX
%reg1031<def> = MOVPC32r 0
%reg1032<def> = ADD32ri %reg1031, <es:_GLOBAL_OFFSET_TABLE_>, %EFLAGS<imp-def>
%reg1028<def> = MOV32rr %EAX
%reg1029<def> = MOV32rr %EDX
%reg1030<def> = MOV32rr %ECX
%reg1027<def> = MOV8rm %reg0, 1, %reg0, 0, Mem:LD(1,1) [0x1201910 + 0]
%reg1025<def> = MOV32rr %reg1029
%reg1026<def> = MOV32rr %reg1030
%reg1024<def> = MOV32rr %reg1028
The copies unnecessarily increase register pressure and it will end up requiring a physical register to be spilled.
With -schedule-livein-copies:
entry: 0x12049d0, LLVM BB @0x1201fa0, ID#0:
Live Ins: %EAX %EDX %ECX
%reg1031<def> = MOVPC32r 0
%reg1032<def> = ADD32ri %reg1031, <es:_GLOBAL_OFFSET_TABLE_>, %EFLAGS<imp-def>
%reg1024<def> = MOV32rr %EAX
%reg1025<def> = MOV32rr %EDX
%reg1026<def> = MOV32rr %ECX
%reg1027<def> = MOV8rm %reg0, 1, %reg0, 0, Mem:LD(1,1) [0x12018e0 + 0]
Much better!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48307 91177308-0d34-0410-b5e6-96231b3b80d8
2008-03-12 22:19:41 +00:00
|
|
|
MachineRegisterInfo &MRI; // Virtual/real register map
|
2006-05-11 23:55:42 +00:00
|
|
|
std::vector<SUnit> SUnits; // The scheduling units.
|
2009-02-10 23:27:53 +00:00
|
|
|
SUnit EntrySU; // Special node for the region entry.
|
|
|
|
SUnit ExitSU; // Special node for the region exit.
|
2006-01-21 02:32:06 +00:00
|
|
|
|
2011-06-15 17:16:12 +00:00
|
|
|
#ifdef NDEBUG
|
|
|
|
static const bool StressSched = false;
|
|
|
|
#else
|
|
|
|
bool StressSched;
|
|
|
|
#endif
|
|
|
|
|
2009-01-15 19:20:50 +00:00
|
|
|
explicit ScheduleDAG(MachineFunction &mf);
|
2006-02-04 06:49:00 +00:00
|
|
|
|
2008-11-19 23:18:57 +00:00
|
|
|
virtual ~ScheduleDAG();
|
2006-01-21 02:32:06 +00:00
|
|
|
|
2012-03-07 05:21:52 +00:00
|
|
|
/// clearDAG - clear the DAG state (between regions).
|
|
|
|
void clearDAG();
|
|
|
|
|
2011-06-28 19:10:37 +00:00
|
|
|
/// getInstrDesc - Return the MCInstrDesc of this SUnit.
|
Various bits of framework needed for precise machine-level selection
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
2010-12-24 05:03:26 +00:00
|
|
|
/// Return NULL for SDNodes without a machine opcode.
|
2011-06-28 19:10:37 +00:00
|
|
|
const MCInstrDesc *getInstrDesc(const SUnit *SU) const {
|
Various bits of framework needed for precise machine-level selection
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
2010-12-24 05:03:26 +00:00
|
|
|
if (SU->isInstr()) return &SU->getInstr()->getDesc();
|
|
|
|
return getNodeDesc(SU->getNode());
|
|
|
|
}
|
|
|
|
|
2007-08-28 20:32:58 +00:00
|
|
|
/// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
|
|
|
|
/// using 'dot'.
|
|
|
|
///
|
2013-01-25 07:45:29 +00:00
|
|
|
virtual void viewGraph(const Twine &Name, const Twine &Title);
|
|
|
|
virtual void viewGraph();
|
2010-12-24 04:28:06 +00:00
|
|
|
|
2008-11-19 23:18:57 +00:00
|
|
|
virtual void dumpNode(const SUnit *SU) const = 0;
|
2008-11-19 22:09:45 +00:00
|
|
|
|
2008-11-19 23:18:57 +00:00
|
|
|
/// getGraphNodeLabel - Return a label for an SUnit node in a visualization
|
|
|
|
/// of the ScheduleDAG.
|
|
|
|
virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
|
2008-04-03 16:36:07 +00:00
|
|
|
|
2012-03-07 00:18:22 +00:00
|
|
|
/// getDAGLabel - Return a label for the region of code covered by the DAG.
|
|
|
|
virtual std::string getDAGName() const = 0;
|
|
|
|
|
2008-11-19 23:18:57 +00:00
|
|
|
/// addCustomGraphFeatures - Add custom features for a visualization of
|
|
|
|
/// the ScheduleDAG.
|
2008-11-24 19:51:59 +00:00
|
|
|
virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
|
2008-04-03 16:36:07 +00:00
|
|
|
|
2008-11-20 01:26:25 +00:00
|
|
|
#ifndef NDEBUG
|
2012-03-07 05:21:36 +00:00
|
|
|
/// VerifyScheduledDAG - Verify that all SUnits were scheduled and that
|
|
|
|
/// their state is consistent. Return the number of scheduled SUnits.
|
|
|
|
unsigned VerifyScheduledDAG(bool isBottomUp);
|
2008-11-20 01:26:25 +00:00
|
|
|
#endif
|
|
|
|
|
Various bits of framework needed for precise machine-level selection
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
2010-12-24 05:03:26 +00:00
|
|
|
private:
|
2011-06-28 19:10:37 +00:00
|
|
|
// Return the MCInstrDesc of this SDNode or NULL.
|
|
|
|
const MCInstrDesc *getNodeDesc(const SDNode *Node) const;
|
2006-01-21 02:32:06 +00:00
|
|
|
};
|
|
|
|
|
2009-08-27 23:44:33 +00:00
|
|
|
class SUnitIterator : public std::iterator<std::forward_iterator_tag,
|
|
|
|
SUnit, ptrdiff_t> {
|
2007-08-28 20:32:58 +00:00
|
|
|
SUnit *Node;
|
|
|
|
unsigned Operand;
|
|
|
|
|
|
|
|
SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
|
|
|
|
public:
|
|
|
|
bool operator==(const SUnitIterator& x) const {
|
|
|
|
return Operand == x.Operand;
|
|
|
|
}
|
|
|
|
bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
|
|
|
|
|
|
|
|
const SUnitIterator &operator=(const SUnitIterator &I) {
|
2009-08-27 23:44:33 +00:00
|
|
|
assert(I.Node==Node && "Cannot assign iterators to two different nodes!");
|
2007-08-28 20:32:58 +00:00
|
|
|
Operand = I.Operand;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
pointer operator*() const {
|
2008-12-09 22:54:47 +00:00
|
|
|
return Node->Preds[Operand].getSUnit();
|
2007-08-28 20:32:58 +00:00
|
|
|
}
|
|
|
|
pointer operator->() const { return operator*(); }
|
|
|
|
|
|
|
|
SUnitIterator& operator++() { // Preincrement
|
|
|
|
++Operand;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
SUnitIterator operator++(int) { // Postincrement
|
|
|
|
SUnitIterator tmp = *this; ++*this; return tmp;
|
|
|
|
}
|
|
|
|
|
|
|
|
static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
|
|
|
|
static SUnitIterator end (SUnit *N) {
|
2008-05-05 18:30:58 +00:00
|
|
|
return SUnitIterator(N, (unsigned)N->Preds.size());
|
2007-08-28 20:32:58 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
unsigned getOperand() const { return Operand; }
|
|
|
|
const SUnit *getNode() const { return Node; }
|
2008-12-09 22:54:47 +00:00
|
|
|
/// isCtrlDep - Test if this is not an SDep::Data dependence.
|
|
|
|
bool isCtrlDep() const {
|
2008-12-16 00:51:33 +00:00
|
|
|
return getSDep().isCtrl();
|
2008-12-09 22:54:47 +00:00
|
|
|
}
|
|
|
|
bool isArtificialDep() const {
|
2008-12-16 00:51:33 +00:00
|
|
|
return getSDep().isArtificial();
|
|
|
|
}
|
|
|
|
const SDep &getSDep() const {
|
|
|
|
return Node->Preds[Operand];
|
2008-12-09 22:54:47 +00:00
|
|
|
}
|
2007-08-28 20:32:58 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
template <> struct GraphTraits<SUnit*> {
|
|
|
|
typedef SUnit NodeType;
|
|
|
|
typedef SUnitIterator ChildIteratorType;
|
|
|
|
static inline NodeType *getEntryNode(SUnit *N) { return N; }
|
|
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
|
|
return SUnitIterator::begin(N);
|
|
|
|
}
|
|
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
|
|
return SUnitIterator::end(N);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
|
|
|
|
typedef std::vector<SUnit>::iterator nodes_iterator;
|
|
|
|
static nodes_iterator nodes_begin(ScheduleDAG *G) {
|
|
|
|
return G->SUnits.begin();
|
|
|
|
}
|
|
|
|
static nodes_iterator nodes_end(ScheduleDAG *G) {
|
|
|
|
return G->SUnits.end();
|
|
|
|
}
|
|
|
|
};
|
2008-11-25 00:52:40 +00:00
|
|
|
|
|
|
|
/// ScheduleDAGTopologicalSort is a class that computes a topological
|
|
|
|
/// ordering for SUnits and provides methods for dynamically updating
|
|
|
|
/// the ordering as new edges are added.
|
|
|
|
///
|
|
|
|
/// This allows a very fast implementation of IsReachable, for example.
|
|
|
|
///
|
|
|
|
class ScheduleDAGTopologicalSort {
|
|
|
|
/// SUnits - A reference to the ScheduleDAG's SUnits.
|
|
|
|
std::vector<SUnit> &SUnits;
|
2012-11-12 19:28:57 +00:00
|
|
|
SUnit *ExitSU;
|
2008-11-25 00:52:40 +00:00
|
|
|
|
|
|
|
/// Index2Node - Maps topological index to the node number.
|
|
|
|
std::vector<int> Index2Node;
|
|
|
|
/// Node2Index - Maps the node number to its topological index.
|
|
|
|
std::vector<int> Node2Index;
|
|
|
|
/// Visited - a set of nodes visited during a DFS traversal.
|
|
|
|
BitVector Visited;
|
|
|
|
|
2010-12-24 04:28:06 +00:00
|
|
|
/// DFS - make a DFS traversal and mark all nodes affected by the
|
2008-11-25 00:52:40 +00:00
|
|
|
/// edge insertion. These nodes will later get new topological indexes
|
|
|
|
/// by means of the Shift method.
|
|
|
|
void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
|
|
|
|
|
|
|
|
/// Shift - reassign topological indexes for the nodes in the DAG
|
|
|
|
/// to preserve the topological ordering.
|
|
|
|
void Shift(BitVector& Visited, int LowerBound, int UpperBound);
|
|
|
|
|
|
|
|
/// Allocate - assign the topological index to the node n.
|
|
|
|
void Allocate(int n, int index);
|
|
|
|
|
|
|
|
public:
|
2012-11-12 19:28:57 +00:00
|
|
|
ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits, SUnit *ExitSU);
|
2008-11-25 00:52:40 +00:00
|
|
|
|
2010-12-24 04:28:06 +00:00
|
|
|
/// InitDAGTopologicalSorting - create the initial topological
|
2008-11-25 00:52:40 +00:00
|
|
|
/// ordering from the DAG to be scheduled.
|
|
|
|
void InitDAGTopologicalSorting();
|
|
|
|
|
|
|
|
/// IsReachable - Checks if SU is reachable from TargetSU.
|
|
|
|
bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
|
|
|
|
|
2013-04-24 15:54:43 +00:00
|
|
|
/// WillCreateCycle - Return true if addPred(TargetSU, SU) creates a cycle.
|
|
|
|
bool WillCreateCycle(SUnit *TargetSU, SUnit *SU);
|
2008-11-25 00:52:40 +00:00
|
|
|
|
2011-04-15 05:18:47 +00:00
|
|
|
/// AddPred - Updates the topological ordering to accommodate an edge
|
2008-11-25 00:52:40 +00:00
|
|
|
/// to be added from SUnit X to SUnit Y.
|
|
|
|
void AddPred(SUnit *Y, SUnit *X);
|
|
|
|
|
2011-04-15 05:18:47 +00:00
|
|
|
/// RemovePred - Updates the topological ordering to accommodate an
|
2008-11-25 00:52:40 +00:00
|
|
|
/// an edge to be removed from the specified node N from the predecessors
|
|
|
|
/// of the current node M.
|
|
|
|
void RemovePred(SUnit *M, SUnit *N);
|
|
|
|
|
|
|
|
typedef std::vector<int>::iterator iterator;
|
|
|
|
typedef std::vector<int>::const_iterator const_iterator;
|
|
|
|
iterator begin() { return Index2Node.begin(); }
|
|
|
|
const_iterator begin() const { return Index2Node.begin(); }
|
|
|
|
iterator end() { return Index2Node.end(); }
|
|
|
|
const_iterator end() const { return Index2Node.end(); }
|
|
|
|
|
|
|
|
typedef std::vector<int>::reverse_iterator reverse_iterator;
|
|
|
|
typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
|
|
|
|
reverse_iterator rbegin() { return Index2Node.rbegin(); }
|
|
|
|
const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
|
|
|
|
reverse_iterator rend() { return Index2Node.rend(); }
|
|
|
|
const_reverse_iterator rend() const { return Index2Node.rend(); }
|
|
|
|
};
|
2006-01-21 02:32:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|