llvm-6502/lib/Target/R600/AMDILCFGStructurizer.cpp

3052 lines
98 KiB
C++
Raw Normal View History

//===-- AMDILCFGStructurizer.cpp - CFG Structurizer -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
/// \file
//==-----------------------------------------------------------------------===//
#define DEBUGME 0
#define DEBUG_TYPE "structcfg"
#include "AMDGPUInstrInfo.h"
#include "AMDIL.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DominatorInternals.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
// TODO: move-begin.
//===----------------------------------------------------------------------===//
//
// Statistics for CFGStructurizer.
//
//===----------------------------------------------------------------------===//
STATISTIC(numSerialPatternMatch, "CFGStructurizer number of serial pattern "
"matched");
STATISTIC(numIfPatternMatch, "CFGStructurizer number of if pattern "
"matched");
STATISTIC(numLoopbreakPatternMatch, "CFGStructurizer number of loop-break "
"pattern matched");
STATISTIC(numLoopcontPatternMatch, "CFGStructurizer number of loop-continue "
"pattern matched");
STATISTIC(numLoopPatternMatch, "CFGStructurizer number of loop pattern "
"matched");
STATISTIC(numClonedBlock, "CFGStructurizer cloned blocks");
STATISTIC(numClonedInstr, "CFGStructurizer cloned instructions");
//===----------------------------------------------------------------------===//
//
// Miscellaneous utility for CFGStructurizer.
//
//===----------------------------------------------------------------------===//
namespace llvmCFGStruct {
#define SHOWNEWINSTR(i) \
if (DEBUGME) errs() << "New instr: " << *i << "\n"
#define SHOWNEWBLK(b, msg) \
if (DEBUGME) { \
errs() << msg << "BB" << b->getNumber() << "size " << b->size(); \
errs() << "\n"; \
}
#define SHOWBLK_DETAIL(b, msg) \
if (DEBUGME) { \
if (b) { \
errs() << msg << "BB" << b->getNumber() << "size " << b->size(); \
b->print(errs()); \
errs() << "\n"; \
} \
}
#define INVALIDSCCNUM -1
#define INVALIDREGNUM 0
template<class LoopinfoT>
void PrintLoopinfo(const LoopinfoT &LoopInfo, llvm::raw_ostream &OS) {
for (typename LoopinfoT::iterator iter = LoopInfo.begin(),
iterEnd = LoopInfo.end();
iter != iterEnd; ++iter) {
(*iter)->print(OS, 0);
}
}
template<class NodeT>
void ReverseVector(SmallVector<NodeT *, DEFAULT_VEC_SLOTS> &Src) {
size_t sz = Src.size();
for (size_t i = 0; i < sz/2; ++i) {
NodeT *t = Src[i];
Src[i] = Src[sz - i - 1];
Src[sz - i - 1] = t;
}
}
} //end namespace llvmCFGStruct
//===----------------------------------------------------------------------===//
//
// supporting data structure for CFGStructurizer
//
//===----------------------------------------------------------------------===//
namespace llvmCFGStruct {
template<class PassT>
struct CFGStructTraits {
};
template <class InstrT>
class BlockInformation {
public:
bool isRetired;
int sccNum;
//SmallVector<InstrT*, DEFAULT_VEC_SLOTS> succInstr;
//Instructions defining the corresponding successor.
BlockInformation() : isRetired(false), sccNum(INVALIDSCCNUM) {}
};
template <class BlockT, class InstrT, class RegiT>
class LandInformation {
public:
BlockT *landBlk;
std::set<RegiT> breakInitRegs; //Registers that need to "reg = 0", before
//WHILELOOP(thisloop) init before entering
//thisloop.
std::set<RegiT> contInitRegs; //Registers that need to "reg = 0", after
//WHILELOOP(thisloop) init after entering
//thisloop.
std::set<RegiT> endbranchInitRegs; //Init before entering this loop, at loop
//land block, branch cond on this reg.
std::set<RegiT> breakOnRegs; //registers that need to "if (reg) break
//endif" after ENDLOOP(thisloop) break
//outerLoopOf(thisLoop).
std::set<RegiT> contOnRegs; //registers that need to "if (reg) continue
//endif" after ENDLOOP(thisloop) continue on
//outerLoopOf(thisLoop).
LandInformation() : landBlk(NULL) {}
};
} //end of namespace llvmCFGStruct
//===----------------------------------------------------------------------===//
//
// CFGStructurizer
//
//===----------------------------------------------------------------------===//
namespace llvmCFGStruct {
// bixia TODO: port it to BasicBlock, not just MachineBasicBlock.
template<class PassT>
class CFGStructurizer {
public:
typedef enum {
Not_SinglePath = 0,
SinglePath_InPath = 1,
SinglePath_NotInPath = 2
} PathToKind;
public:
typedef typename PassT::InstructionType InstrT;
typedef typename PassT::FunctionType FuncT;
typedef typename PassT::DominatortreeType DomTreeT;
typedef typename PassT::PostDominatortreeType PostDomTreeT;
typedef typename PassT::DomTreeNodeType DomTreeNodeT;
typedef typename PassT::LoopinfoType LoopInfoT;
typedef GraphTraits<FuncT *> FuncGTraits;
//typedef FuncGTraits::nodes_iterator BlockIterator;
typedef typename FuncT::iterator BlockIterator;
typedef typename FuncGTraits::NodeType BlockT;
typedef GraphTraits<BlockT *> BlockGTraits;
typedef GraphTraits<Inverse<BlockT *> > InvBlockGTraits;
//typedef BlockGTraits::succ_iterator InstructionIterator;
typedef typename BlockT::iterator InstrIterator;
typedef CFGStructTraits<PassT> CFGTraits;
typedef BlockInformation<InstrT> BlockInfo;
typedef std::map<BlockT *, BlockInfo *> BlockInfoMap;
typedef int RegiT;
typedef typename PassT::LoopType LoopT;
typedef LandInformation<BlockT, InstrT, RegiT> LoopLandInfo;
typedef std::map<LoopT *, LoopLandInfo *> LoopLandInfoMap;
//landing info for loop break
typedef SmallVector<BlockT *, 32> BlockTSmallerVector;
public:
CFGStructurizer();
~CFGStructurizer();
/// Perform the CFG structurization
bool run(FuncT &Func, PassT &Pass, const AMDGPURegisterInfo *tri);
/// Perform the CFG preparation
bool prepare(FuncT &Func, PassT &Pass, const AMDGPURegisterInfo *tri);
private:
void reversePredicateSetter(typename BlockT::iterator);
void orderBlocks();
void printOrderedBlocks(llvm::raw_ostream &OS);
int patternMatch(BlockT *CurBlock);
int patternMatchGroup(BlockT *CurBlock);
int serialPatternMatch(BlockT *CurBlock);
int ifPatternMatch(BlockT *CurBlock);
int switchPatternMatch(BlockT *CurBlock);
int loopendPatternMatch(BlockT *CurBlock);
int loopPatternMatch(BlockT *CurBlock);
int loopbreakPatternMatch(LoopT *LoopRep, BlockT *LoopHeader);
int loopcontPatternMatch(LoopT *LoopRep, BlockT *LoopHeader);
//int loopWithoutBreak(BlockT *);
void handleLoopbreak (BlockT *ExitingBlock, LoopT *ExitingLoop,
BlockT *ExitBlock, LoopT *exitLoop, BlockT *landBlock);
void handleLoopcontBlock(BlockT *ContingBlock, LoopT *contingLoop,
BlockT *ContBlock, LoopT *contLoop);
bool isSameloopDetachedContbreak(BlockT *Src1Block, BlockT *Src2Block);
int handleJumpintoIf(BlockT *HeadBlock, BlockT *TrueBlock,
BlockT *FalseBlock);
int handleJumpintoIfImp(BlockT *HeadBlock, BlockT *TrueBlock,
BlockT *FalseBlock);
int improveSimpleJumpintoIf(BlockT *HeadBlock, BlockT *TrueBlock,
BlockT *FalseBlock, BlockT **LandBlockPtr);
void showImproveSimpleJumpintoIf(BlockT *HeadBlock, BlockT *TrueBlock,
BlockT *FalseBlock, BlockT *LandBlock,
bool Detail = false);
PathToKind singlePathTo(BlockT *SrcBlock, BlockT *DstBlock,
bool AllowSideEntry = true);
BlockT *singlePathEnd(BlockT *srcBlock, BlockT *DstBlock,
bool AllowSideEntry = true);
int cloneOnSideEntryTo(BlockT *PreBlock, BlockT *SrcBlock, BlockT *DstBlock);
void mergeSerialBlock(BlockT *DstBlock, BlockT *srcBlock);
void mergeIfthenelseBlock(InstrT *BranchInstr, BlockT *CurBlock,
BlockT *TrueBlock, BlockT *FalseBlock,
BlockT *LandBlock);
void mergeLooplandBlock(BlockT *DstBlock, LoopLandInfo *LoopLand);
void mergeLoopbreakBlock(BlockT *ExitingBlock, BlockT *ExitBlock,
BlockT *ExitLandBlock, RegiT SetReg);
void settleLoopcontBlock(BlockT *ContingBlock, BlockT *ContBlock,
RegiT SetReg);
BlockT *relocateLoopcontBlock(LoopT *ParentLoopRep, LoopT *LoopRep,
std::set<BlockT*> &ExitBlockSet,
BlockT *ExitLandBlk);
BlockT *addLoopEndbranchBlock(LoopT *LoopRep,
BlockTSmallerVector &ExitingBlocks,
BlockTSmallerVector &ExitBlocks);
BlockT *normalizeInfiniteLoopExit(LoopT *LoopRep);
void removeUnconditionalBranch(BlockT *SrcBlock);
void removeRedundantConditionalBranch(BlockT *SrcBlock);
void addDummyExitBlock(SmallVector<BlockT *, DEFAULT_VEC_SLOTS> &RetBlocks);
void removeSuccessor(BlockT *SrcBlock);
BlockT *cloneBlockForPredecessor(BlockT *CurBlock, BlockT *PredBlock);
BlockT *exitingBlock2ExitBlock (LoopT *LoopRep, BlockT *exitingBlock);
void migrateInstruction(BlockT *SrcBlock, BlockT *DstBlock,
InstrIterator InsertPos);
void recordSccnum(BlockT *SrcBlock, int SCCNum);
int getSCCNum(BlockT *srcBlk);
void retireBlock(BlockT *DstBlock, BlockT *SrcBlock);
bool isRetiredBlock(BlockT *SrcBlock);
bool isActiveLoophead(BlockT *CurBlock);
bool needMigrateBlock(BlockT *Block);
BlockT *recordLoopLandBlock(LoopT *LoopRep, BlockT *LandBlock,
BlockTSmallerVector &exitBlocks,
std::set<BlockT*> &ExitBlockSet);
void setLoopLandBlock(LoopT *LoopRep, BlockT *Block = NULL);
BlockT *getLoopLandBlock(LoopT *LoopRep);
LoopLandInfo *getLoopLandInfo(LoopT *LoopRep);
void addLoopBreakOnReg(LoopT *LoopRep, RegiT RegNum);
void addLoopContOnReg(LoopT *LoopRep, RegiT RegNum);
void addLoopBreakInitReg(LoopT *LoopRep, RegiT RegNum);
void addLoopContInitReg(LoopT *LoopRep, RegiT RegNum);
void addLoopEndbranchInitReg(LoopT *LoopRep, RegiT RegNum);
bool hasBackEdge(BlockT *curBlock);
unsigned getLoopDepth (LoopT *LoopRep);
int countActiveBlock(
typename SmallVector<BlockT *, DEFAULT_VEC_SLOTS>::const_iterator IterStart,
typename SmallVector<BlockT *, DEFAULT_VEC_SLOTS>::const_iterator IterEnd);
BlockT *findNearestCommonPostDom(std::set<BlockT *>&);
BlockT *findNearestCommonPostDom(BlockT *Block1, BlockT *Block2);
private:
DomTreeT *domTree;
PostDomTreeT *postDomTree;
LoopInfoT *loopInfo;
PassT *passRep;
FuncT *funcRep;
BlockInfoMap blockInfoMap;
LoopLandInfoMap loopLandInfoMap;
SmallVector<BlockT *, DEFAULT_VEC_SLOTS> orderedBlks;
const AMDGPURegisterInfo *TRI;
}; //template class CFGStructurizer
template<class PassT> CFGStructurizer<PassT>::CFGStructurizer()
: domTree(NULL), postDomTree(NULL), loopInfo(NULL) {
}
template<class PassT> CFGStructurizer<PassT>::~CFGStructurizer() {
for (typename BlockInfoMap::iterator I = blockInfoMap.begin(),
E = blockInfoMap.end(); I != E; ++I) {
delete I->second;
}
}
template<class PassT>
bool CFGStructurizer<PassT>::prepare(FuncT &func, PassT &pass,
const AMDGPURegisterInfo * tri) {
passRep = &pass;
funcRep = &func;
TRI = tri;
bool changed = false;
//FIXME: if not reducible flow graph, make it so ???
if (DEBUGME) {
errs() << "AMDGPUCFGStructurizer::prepare\n";
}
loopInfo = CFGTraits::getLoopInfo(pass);
if (DEBUGME) {
errs() << "LoopInfo:\n";
PrintLoopinfo(*loopInfo, errs());
}
orderBlocks();
if (DEBUGME) {
errs() << "Ordered blocks:\n";
printOrderedBlocks(errs());
}
SmallVector<BlockT *, DEFAULT_VEC_SLOTS> retBlks;
for (typename LoopInfoT::iterator iter = loopInfo->begin(),
iterEnd = loopInfo->end();
iter != iterEnd; ++iter) {
LoopT* loopRep = (*iter);
BlockTSmallerVector exitingBlks;
loopRep->getExitingBlocks(exitingBlks);
if (exitingBlks.size() == 0) {
BlockT* dummyExitBlk = normalizeInfiniteLoopExit(loopRep);
if (dummyExitBlk != NULL)
retBlks.push_back(dummyExitBlk);
}
}
// Remove unconditional branch instr.
// Add dummy exit block iff there are multiple returns.
for (typename SmallVector<BlockT *, DEFAULT_VEC_SLOTS>::const_iterator
iterBlk = orderedBlks.begin(), iterEndBlk = orderedBlks.end();
iterBlk != iterEndBlk;
++iterBlk) {
BlockT *curBlk = *iterBlk;
removeUnconditionalBranch(curBlk);
removeRedundantConditionalBranch(curBlk);
if (CFGTraits::isReturnBlock(curBlk)) {
retBlks.push_back(curBlk);
}
assert(curBlk->succ_size() <= 2);
} //for
if (retBlks.size() >= 2) {
addDummyExitBlock(retBlks);
changed = true;
}
return changed;
} //CFGStructurizer::prepare
template<class PassT>
bool CFGStructurizer<PassT>::run(FuncT &func, PassT &pass,
const AMDGPURegisterInfo * tri) {
passRep = &pass;
funcRep = &func;
TRI = tri;
//Assume reducible CFG...
if (DEBUGME) {
errs() << "AMDGPUCFGStructurizer::run\n";
func.viewCFG();
}
domTree = CFGTraits::getDominatorTree(pass);
if (DEBUGME) {
domTree->print(errs(), (const llvm::Module*)0);
}
postDomTree = CFGTraits::getPostDominatorTree(pass);
if (DEBUGME) {
postDomTree->print(errs());
}
loopInfo = CFGTraits::getLoopInfo(pass);
if (DEBUGME) {
errs() << "LoopInfo:\n";
PrintLoopinfo(*loopInfo, errs());
}
orderBlocks();
#ifdef STRESSTEST
//Use the worse block ordering to test the algorithm.
ReverseVector(orderedBlks);
#endif
if (DEBUGME) {
errs() << "Ordered blocks:\n";
printOrderedBlocks(errs());
}
int numIter = 0;
bool finish = false;
BlockT *curBlk;
bool makeProgress = false;
int numRemainedBlk = countActiveBlock(orderedBlks.begin(),
orderedBlks.end());
do {
++numIter;
if (DEBUGME) {
errs() << "numIter = " << numIter
<< ", numRemaintedBlk = " << numRemainedBlk << "\n";
}
typename SmallVector<BlockT *, DEFAULT_VEC_SLOTS>::const_iterator
iterBlk = orderedBlks.begin();
typename SmallVector<BlockT *, DEFAULT_VEC_SLOTS>::const_iterator
iterBlkEnd = orderedBlks.end();
typename SmallVector<BlockT *, DEFAULT_VEC_SLOTS>::const_iterator
sccBeginIter = iterBlk;
BlockT *sccBeginBlk = NULL;
int sccNumBlk = 0; // The number of active blocks, init to a
// maximum possible number.
int sccNumIter; // Number of iteration in this SCC.
while (iterBlk != iterBlkEnd) {
curBlk = *iterBlk;
if (sccBeginBlk == NULL) {
sccBeginIter = iterBlk;
sccBeginBlk = curBlk;
sccNumIter = 0;
sccNumBlk = numRemainedBlk; // Init to maximum possible number.
if (DEBUGME) {
errs() << "start processing SCC" << getSCCNum(sccBeginBlk);
errs() << "\n";
}
}
if (!isRetiredBlock(curBlk)) {
patternMatch(curBlk);
}
++iterBlk;
bool contNextScc = true;
if (iterBlk == iterBlkEnd
|| getSCCNum(sccBeginBlk) != getSCCNum(*iterBlk)) {
// Just finish one scc.
++sccNumIter;
int sccRemainedNumBlk = countActiveBlock(sccBeginIter, iterBlk);
if (sccRemainedNumBlk != 1 && sccRemainedNumBlk >= sccNumBlk) {
if (DEBUGME) {
errs() << "Can't reduce SCC " << getSCCNum(curBlk)
<< ", sccNumIter = " << sccNumIter;
errs() << "doesn't make any progress\n";
}
contNextScc = true;
} else if (sccRemainedNumBlk != 1 && sccRemainedNumBlk < sccNumBlk) {
sccNumBlk = sccRemainedNumBlk;
iterBlk = sccBeginIter;
contNextScc = false;
if (DEBUGME) {
errs() << "repeat processing SCC" << getSCCNum(curBlk)
<< "sccNumIter = " << sccNumIter << "\n";
func.viewCFG();
}
} else {
// Finish the current scc.
contNextScc = true;
}
} else {
// Continue on next component in the current scc.
contNextScc = false;
}
if (contNextScc) {
sccBeginBlk = NULL;
}
} //while, "one iteration" over the function.
BlockT *entryBlk = FuncGTraits::nodes_begin(&func);
if (entryBlk->succ_size() == 0) {
finish = true;
if (DEBUGME) {
errs() << "Reduce to one block\n";
}
} else {
int newnumRemainedBlk
= countActiveBlock(orderedBlks.begin(), orderedBlks.end());
// consider cloned blocks ??
if (newnumRemainedBlk == 1 || newnumRemainedBlk < numRemainedBlk) {
makeProgress = true;
numRemainedBlk = newnumRemainedBlk;
} else {
makeProgress = false;
if (DEBUGME) {
errs() << "No progress\n";
}
}
}
} while (!finish && makeProgress);
// Misc wrap up to maintain the consistency of the Function representation.
CFGTraits::wrapup(FuncGTraits::nodes_begin(&func));
// Detach retired Block, release memory.
for (typename BlockInfoMap::iterator iterMap = blockInfoMap.begin(),
iterEndMap = blockInfoMap.end(); iterMap != iterEndMap; ++iterMap) {
if ((*iterMap).second && (*iterMap).second->isRetired) {
assert(((*iterMap).first)->getNumber() != -1);
if (DEBUGME) {
errs() << "Erase BB" << ((*iterMap).first)->getNumber() << "\n";
}
(*iterMap).first->eraseFromParent(); //Remove from the parent Function.
}
delete (*iterMap).second;
}
blockInfoMap.clear();
// clear loopLandInfoMap
for (typename LoopLandInfoMap::iterator iterMap = loopLandInfoMap.begin(),
iterEndMap = loopLandInfoMap.end(); iterMap != iterEndMap; ++iterMap) {
delete (*iterMap).second;
}
loopLandInfoMap.clear();
if (DEBUGME) {
func.viewCFG();
}
if (!finish) {
assert(!"IRREDUCIBL_CF");
}
return true;
} //CFGStructurizer::run
/// Print the ordered Blocks.
///
template<class PassT>
void CFGStructurizer<PassT>::printOrderedBlocks(llvm::raw_ostream &os) {
size_t i = 0;
for (typename SmallVector<BlockT *, DEFAULT_VEC_SLOTS>::const_iterator
iterBlk = orderedBlks.begin(), iterBlkEnd = orderedBlks.end();
iterBlk != iterBlkEnd;
++iterBlk, ++i) {
os << "BB" << (*iterBlk)->getNumber();
os << "(" << getSCCNum(*iterBlk) << "," << (*iterBlk)->size() << ")";
if (i != 0 && i % 10 == 0) {
os << "\n";
} else {
os << " ";
}
}
} //printOrderedBlocks
/// Compute the reversed DFS post order of Blocks
///
template<class PassT> void CFGStructurizer<PassT>::orderBlocks() {
int sccNum = 0;
BlockT *bb;
for (scc_iterator<FuncT *> sccIter = scc_begin(funcRep),
sccEnd = scc_end(funcRep); sccIter != sccEnd; ++sccIter, ++sccNum) {
std::vector<BlockT *> &sccNext = *sccIter;
for (typename std::vector<BlockT *>::const_iterator
blockIter = sccNext.begin(), blockEnd = sccNext.end();
blockIter != blockEnd; ++blockIter) {
bb = *blockIter;
orderedBlks.push_back(bb);
recordSccnum(bb, sccNum);
}
}
//walk through all the block in func to check for unreachable
for (BlockIterator blockIter1 = FuncGTraits::nodes_begin(funcRep),
blockEnd1 = FuncGTraits::nodes_end(funcRep);
blockIter1 != blockEnd1; ++blockIter1) {
BlockT *bb = &(*blockIter1);
sccNum = getSCCNum(bb);
if (sccNum == INVALIDSCCNUM) {
errs() << "unreachable block BB" << bb->getNumber() << "\n";
}
}
} //orderBlocks
template<class PassT> int CFGStructurizer<PassT>::patternMatch(BlockT *curBlk) {
int numMatch = 0;
int curMatch;
if (DEBUGME) {
errs() << "Begin patternMatch BB" << curBlk->getNumber() << "\n";
}
while ((curMatch = patternMatchGroup(curBlk)) > 0) {
numMatch += curMatch;
}
if (DEBUGME) {
errs() << "End patternMatch BB" << curBlk->getNumber()
<< ", numMatch = " << numMatch << "\n";
}
return numMatch;
} //patternMatch
template<class PassT>
int CFGStructurizer<PassT>::patternMatchGroup(BlockT *curBlk) {
int numMatch = 0;
numMatch += serialPatternMatch(curBlk);
numMatch += ifPatternMatch(curBlk);
numMatch += loopendPatternMatch(curBlk);
numMatch += loopPatternMatch(curBlk);
return numMatch;
}//patternMatchGroup
template<class PassT>
int CFGStructurizer<PassT>::serialPatternMatch(BlockT *curBlk) {
if (curBlk->succ_size() != 1) {
return 0;
}
BlockT *childBlk = *curBlk->succ_begin();
if (childBlk->pred_size() != 1 || isActiveLoophead(childBlk)) {
return 0;
}
mergeSerialBlock(curBlk, childBlk);
++numSerialPatternMatch;
return 1;
} //serialPatternMatch
template<class PassT>
int CFGStructurizer<PassT>::ifPatternMatch(BlockT *curBlk) {
//two edges
if (curBlk->succ_size() != 2) {
return 0;
}
if (hasBackEdge(curBlk)) {
return 0;
}
InstrT *branchInstr = CFGTraits::getNormalBlockBranchInstr(curBlk);
if (branchInstr == NULL) {
return 0;
}
assert(CFGTraits::isCondBranch(branchInstr));
BlockT *trueBlk = CFGTraits::getTrueBranch(branchInstr);
BlockT *falseBlk = CFGTraits::getFalseBranch(curBlk, branchInstr);
BlockT *landBlk;
int cloned = 0;
// TODO: Simplify
if (trueBlk->succ_size() == 1 && falseBlk->succ_size() == 1
&& *trueBlk->succ_begin() == *falseBlk->succ_begin()) {
landBlk = *trueBlk->succ_begin();
} else if (trueBlk->succ_size() == 0 && falseBlk->succ_size() == 0) {
landBlk = NULL;
} else if (trueBlk->succ_size() == 1 && *trueBlk->succ_begin() == falseBlk) {
landBlk = falseBlk;
falseBlk = NULL;
} else if (falseBlk->succ_size() == 1
&& *falseBlk->succ_begin() == trueBlk) {
landBlk = trueBlk;
trueBlk = NULL;
} else if (falseBlk->succ_size() == 1
&& isSameloopDetachedContbreak(trueBlk, falseBlk)) {
landBlk = *falseBlk->succ_begin();
} else if (trueBlk->succ_size() == 1
&& isSameloopDetachedContbreak(falseBlk, trueBlk)) {
landBlk = *trueBlk->succ_begin();
} else {
return handleJumpintoIf(curBlk, trueBlk, falseBlk);
}
// improveSimpleJumpinfoIf can handle the case where landBlk == NULL but the
// new BB created for landBlk==NULL may introduce new challenge to the
// reduction process.
if (landBlk != NULL &&
((trueBlk && trueBlk->pred_size() > 1)
|| (falseBlk && falseBlk->pred_size() > 1))) {
cloned += improveSimpleJumpintoIf(curBlk, trueBlk, falseBlk, &landBlk);
}
if (trueBlk && trueBlk->pred_size() > 1) {
trueBlk = cloneBlockForPredecessor(trueBlk, curBlk);
++cloned;
}
if (falseBlk && falseBlk->pred_size() > 1) {
falseBlk = cloneBlockForPredecessor(falseBlk, curBlk);
++cloned;
}
mergeIfthenelseBlock(branchInstr, curBlk, trueBlk, falseBlk, landBlk);
++numIfPatternMatch;
numClonedBlock += cloned;
return 1 + cloned;
} //ifPatternMatch
template<class PassT>
int CFGStructurizer<PassT>::switchPatternMatch(BlockT *curBlk) {
return 0;
} //switchPatternMatch
template<class PassT>
int CFGStructurizer<PassT>::loopendPatternMatch(BlockT *curBlk) {
LoopT *loopRep = loopInfo->getLoopFor(curBlk);
typename std::vector<LoopT *> nestedLoops;
while (loopRep) {
nestedLoops.push_back(loopRep);
loopRep = loopRep->getParentLoop();
}
if (nestedLoops.size() == 0) {
return 0;
}
// Process nested loop outside->inside, so "continue" to a outside loop won't
// be mistaken as "break" of the current loop.
int num = 0;
for (typename std::vector<LoopT *>::reverse_iterator
iter = nestedLoops.rbegin(), iterEnd = nestedLoops.rend();
iter != iterEnd; ++iter) {
loopRep = *iter;
if (getLoopLandBlock(loopRep) != NULL) {
continue;
}
BlockT *loopHeader = loopRep->getHeader();
int numBreak = loopbreakPatternMatch(loopRep, loopHeader);
if (numBreak == -1) {
break;
}
int numCont = loopcontPatternMatch(loopRep, loopHeader);
num += numBreak + numCont;
}
return num;
} //loopendPatternMatch
template<class PassT>
int CFGStructurizer<PassT>::loopPatternMatch(BlockT *curBlk) {
if (curBlk->succ_size() != 0) {
return 0;
}
int numLoop = 0;
LoopT *loopRep = loopInfo->getLoopFor(curBlk);
while (loopRep && loopRep->getHeader() == curBlk) {
LoopLandInfo *loopLand = getLoopLandInfo(loopRep);
if (loopLand) {
BlockT *landBlk = loopLand->landBlk;
assert(landBlk);
if (!isRetiredBlock(landBlk)) {
mergeLooplandBlock(curBlk, loopLand);
++numLoop;
}
}
loopRep = loopRep->getParentLoop();
}
numLoopPatternMatch += numLoop;
return numLoop;
} //loopPatternMatch
template<class PassT>
int CFGStructurizer<PassT>::loopbreakPatternMatch(LoopT *loopRep,
BlockT *loopHeader) {
BlockTSmallerVector exitingBlks;
loopRep->getExitingBlocks(exitingBlks);
if (DEBUGME) {
errs() << "Loop has " << exitingBlks.size() << " exiting blocks\n";
}
if (exitingBlks.size() == 0) {
setLoopLandBlock(loopRep);
return 0;
}
// Compute the corresponding exitBlks and exit block set.
BlockTSmallerVector exitBlks;
std::set<BlockT *> exitBlkSet;
for (typename BlockTSmallerVector::const_iterator iter = exitingBlks.begin(),
iterEnd = exitingBlks.end(); iter != iterEnd; ++iter) {
BlockT *exitingBlk = *iter;
BlockT *exitBlk = exitingBlock2ExitBlock(loopRep, exitingBlk);
exitBlks.push_back(exitBlk);
exitBlkSet.insert(exitBlk); //non-duplicate insert
}
assert(exitBlkSet.size() > 0);
assert(exitBlks.size() == exitingBlks.size());
if (DEBUGME) {
errs() << "Loop has " << exitBlkSet.size() << " exit blocks\n";
}
// Find exitLandBlk.
BlockT *exitLandBlk = NULL;
int numCloned = 0;
int numSerial = 0;
if (exitBlkSet.size() == 1) {
exitLandBlk = *exitBlkSet.begin();
} else {
exitLandBlk = findNearestCommonPostDom(exitBlkSet);
if (exitLandBlk == NULL) {
return -1;
}
bool allInPath = true;
bool allNotInPath = true;
for (typename std::set<BlockT*>::const_iterator
iter = exitBlkSet.begin(),
iterEnd = exitBlkSet.end();
iter != iterEnd; ++iter) {
BlockT *exitBlk = *iter;
PathToKind pathKind = singlePathTo(exitBlk, exitLandBlk, true);
if (DEBUGME) {
errs() << "BB" << exitBlk->getNumber()
<< " to BB" << exitLandBlk->getNumber() << " PathToKind="
<< pathKind << "\n";
}
allInPath = allInPath && (pathKind == SinglePath_InPath);
allNotInPath = allNotInPath && (pathKind == SinglePath_NotInPath);
if (!allInPath && !allNotInPath) {
if (DEBUGME) {
errs() << "singlePath check fail\n";
}
return -1;
}
} // check all exit blocks
if (allNotInPath) {
// TODO: Simplify, maybe separate function?
LoopT *parentLoopRep = loopRep->getParentLoop();
BlockT *parentLoopHeader = NULL;
if (parentLoopRep)
parentLoopHeader = parentLoopRep->getHeader();
if (exitLandBlk == parentLoopHeader &&
(exitLandBlk = relocateLoopcontBlock(parentLoopRep,
loopRep,
exitBlkSet,
exitLandBlk)) != NULL) {
if (DEBUGME) {
errs() << "relocateLoopcontBlock success\n";
}
} else if ((exitLandBlk = addLoopEndbranchBlock(loopRep,
exitingBlks,
exitBlks)) != NULL) {
if (DEBUGME) {
errs() << "insertEndbranchBlock success\n";
}
} else {
if (DEBUGME) {
errs() << "loop exit fail\n";
}
return -1;
}
}
// Handle side entry to exit path.
exitBlks.clear();
exitBlkSet.clear();
for (typename BlockTSmallerVector::iterator iterExiting =
exitingBlks.begin(),
iterExitingEnd = exitingBlks.end();
iterExiting != iterExitingEnd; ++iterExiting) {
BlockT *exitingBlk = *iterExiting;
BlockT *exitBlk = exitingBlock2ExitBlock(loopRep, exitingBlk);
BlockT *newExitBlk = exitBlk;
if (exitBlk != exitLandBlk && exitBlk->pred_size() > 1) {
newExitBlk = cloneBlockForPredecessor(exitBlk, exitingBlk);
++numCloned;
}
numCloned += cloneOnSideEntryTo(exitingBlk, newExitBlk, exitLandBlk);
exitBlks.push_back(newExitBlk);
exitBlkSet.insert(newExitBlk);
}
for (typename BlockTSmallerVector::iterator iterExit = exitBlks.begin(),
iterExitEnd = exitBlks.end();
iterExit != iterExitEnd; ++iterExit) {
BlockT *exitBlk = *iterExit;
numSerial += serialPatternMatch(exitBlk);
}
for (typename BlockTSmallerVector::iterator iterExit = exitBlks.begin(),
iterExitEnd = exitBlks.end();
iterExit != iterExitEnd; ++iterExit) {
BlockT *exitBlk = *iterExit;
if (exitBlk->pred_size() > 1) {
if (exitBlk != exitLandBlk) {
return -1;
}
} else {
if (exitBlk != exitLandBlk &&
(exitBlk->succ_size() != 1 ||
*exitBlk->succ_begin() != exitLandBlk)) {
return -1;
}
}
}
} // else
exitLandBlk = recordLoopLandBlock(loopRep, exitLandBlk, exitBlks, exitBlkSet);
// Fold break into the breaking block. Leverage across level breaks.
assert(exitingBlks.size() == exitBlks.size());
for (typename BlockTSmallerVector::const_iterator iterExit = exitBlks.begin(),
iterExiting = exitingBlks.begin(), iterExitEnd = exitBlks.end();
iterExit != iterExitEnd; ++iterExit, ++iterExiting) {
BlockT *exitBlk = *iterExit;
BlockT *exitingBlk = *iterExiting;
assert(exitBlk->pred_size() == 1 || exitBlk == exitLandBlk);
LoopT *exitingLoop = loopInfo->getLoopFor(exitingBlk);
handleLoopbreak(exitingBlk, exitingLoop, exitBlk, loopRep, exitLandBlk);
}
int numBreak = static_cast<int>(exitingBlks.size());
numLoopbreakPatternMatch += numBreak;
numClonedBlock += numCloned;
return numBreak + numSerial + numCloned;
} //loopbreakPatternMatch
template<class PassT>
int CFGStructurizer<PassT>::loopcontPatternMatch(LoopT *loopRep,
BlockT *loopHeader) {
int numCont = 0;
SmallVector<BlockT *, DEFAULT_VEC_SLOTS> contBlk;
for (typename InvBlockGTraits::ChildIteratorType iter =
InvBlockGTraits::child_begin(loopHeader),
iterEnd = InvBlockGTraits::child_end(loopHeader);
iter != iterEnd; ++iter) {
BlockT *curBlk = *iter;
if (loopRep->contains(curBlk)) {
handleLoopcontBlock(curBlk, loopInfo->getLoopFor(curBlk),
loopHeader, loopRep);
contBlk.push_back(curBlk);
++numCont;
}
}
for (typename SmallVector<BlockT *, DEFAULT_VEC_SLOTS>::iterator
iter = contBlk.begin(), iterEnd = contBlk.end();
iter != iterEnd; ++iter) {
(*iter)->removeSuccessor(loopHeader);
}
numLoopcontPatternMatch += numCont;
return numCont;
} //loopcontPatternMatch
template<class PassT>
bool CFGStructurizer<PassT>::isSameloopDetachedContbreak(BlockT *src1Blk,
BlockT *src2Blk) {
// return true iff src1Blk->succ_size() == 0 && src1Blk and src2Blk are in the
// same loop with LoopLandInfo without explicitly keeping track of
// loopContBlks and loopBreakBlks, this is a method to get the information.
//
if (src1Blk->succ_size() == 0) {
LoopT *loopRep = loopInfo->getLoopFor(src1Blk);
if (loopRep != NULL && loopRep == loopInfo->getLoopFor(src2Blk)) {
LoopLandInfo *&theEntry = loopLandInfoMap[loopRep];
if (theEntry != NULL) {
if (DEBUGME) {
errs() << "isLoopContBreakBlock yes src1 = BB"
<< src1Blk->getNumber()
<< " src2 = BB" << src2Blk->getNumber() << "\n";
}
return true;
}
}
}
return false;
} //isSameloopDetachedContbreak
template<class PassT>
int CFGStructurizer<PassT>::handleJumpintoIf(BlockT *headBlk,
BlockT *trueBlk,
BlockT *falseBlk) {
int num = handleJumpintoIfImp(headBlk, trueBlk, falseBlk);
if (num == 0) {
if (DEBUGME) {
errs() << "handleJumpintoIf swap trueBlk and FalseBlk" << "\n";
}
num = handleJumpintoIfImp(headBlk, falseBlk, trueBlk);
}
return num;
}
template<class PassT>
int CFGStructurizer<PassT>::handleJumpintoIfImp(BlockT *headBlk,
BlockT *trueBlk,
BlockT *falseBlk) {
int num = 0;
BlockT *downBlk;
//trueBlk could be the common post dominator
downBlk = trueBlk;
if (DEBUGME) {
errs() << "handleJumpintoIfImp head = BB" << headBlk->getNumber()
<< " true = BB" << trueBlk->getNumber()
<< ", numSucc=" << trueBlk->succ_size()
<< " false = BB" << falseBlk->getNumber() << "\n";
}
while (downBlk) {
if (DEBUGME) {
errs() << "check down = BB" << downBlk->getNumber();
}
if (singlePathTo(falseBlk, downBlk) == SinglePath_InPath) {
if (DEBUGME) {
errs() << " working\n";
}
num += cloneOnSideEntryTo(headBlk, trueBlk, downBlk);
num += cloneOnSideEntryTo(headBlk, falseBlk, downBlk);
numClonedBlock += num;
num += serialPatternMatch(*headBlk->succ_begin());
num += serialPatternMatch(*(++headBlk->succ_begin()));
num += ifPatternMatch(headBlk);
assert(num > 0);
break;
}
if (DEBUGME) {
errs() << " not working\n";
}
downBlk = (downBlk->succ_size() == 1) ? (*downBlk->succ_begin()) : NULL;
} // walk down the postDomTree
return num;
} //handleJumpintoIf
template<class PassT>
void CFGStructurizer<PassT>::showImproveSimpleJumpintoIf(BlockT *headBlk,
BlockT *trueBlk,
BlockT *falseBlk,
BlockT *landBlk,
bool detail) {
errs() << "head = BB" << headBlk->getNumber()
<< " size = " << headBlk->size();
if (detail) {
errs() << "\n";
headBlk->print(errs());
errs() << "\n";
}
if (trueBlk) {
errs() << ", true = BB" << trueBlk->getNumber() << " size = "
<< trueBlk->size() << " numPred = " << trueBlk->pred_size();
if (detail) {
errs() << "\n";
trueBlk->print(errs());
errs() << "\n";
}
}
if (falseBlk) {
errs() << ", false = BB" << falseBlk->getNumber() << " size = "
<< falseBlk->size() << " numPred = " << falseBlk->pred_size();
if (detail) {
errs() << "\n";
falseBlk->print(errs());
errs() << "\n";
}
}
if (landBlk) {
errs() << ", land = BB" << landBlk->getNumber() << " size = "
<< landBlk->size() << " numPred = " << landBlk->pred_size();
if (detail) {
errs() << "\n";
landBlk->print(errs());
errs() << "\n";
}
}
errs() << "\n";
} //showImproveSimpleJumpintoIf
template<class PassT>
int CFGStructurizer<PassT>::improveSimpleJumpintoIf(BlockT *headBlk,
BlockT *trueBlk,
BlockT *falseBlk,
BlockT **plandBlk) {
bool migrateTrue = false;
bool migrateFalse = false;
BlockT *landBlk = *plandBlk;
assert((trueBlk == NULL || trueBlk->succ_size() <= 1)
&& (falseBlk == NULL || falseBlk->succ_size() <= 1));
if (trueBlk == falseBlk) {
return 0;
}
migrateTrue = needMigrateBlock(trueBlk);
migrateFalse = needMigrateBlock(falseBlk);
if (!migrateTrue && !migrateFalse) {
return 0;
}
// If we need to migrate either trueBlk and falseBlk, migrate the rest that
// have more than one predecessors. without doing this, its predecessor
// rather than headBlk will have undefined value in initReg.
if (!migrateTrue && trueBlk && trueBlk->pred_size() > 1) {
migrateTrue = true;
}
if (!migrateFalse && falseBlk && falseBlk->pred_size() > 1) {
migrateFalse = true;
}
if (DEBUGME) {
errs() << "before improveSimpleJumpintoIf: ";
showImproveSimpleJumpintoIf(headBlk, trueBlk, falseBlk, landBlk, 0);
}
// org: headBlk => if () {trueBlk} else {falseBlk} => landBlk
//
// new: headBlk => if () {initReg = 1; org trueBlk branch} else
// {initReg = 0; org falseBlk branch }
// => landBlk => if (initReg) {org trueBlk} else {org falseBlk}
// => org landBlk
// if landBlk->pred_size() > 2, put the about if-else inside
// if (initReg !=2) {...}
//
// add initReg = initVal to headBlk
const TargetRegisterClass * I32RC = TRI->getCFGStructurizerRegClass(MVT::i32);
unsigned initReg =
funcRep->getRegInfo().createVirtualRegister(I32RC);
if (!migrateTrue || !migrateFalse) {
int initVal = migrateTrue ? 0 : 1;
CFGTraits::insertAssignInstrBefore(headBlk, passRep, initReg, initVal);
}
int numNewBlk = 0;
if (landBlk == NULL) {
landBlk = funcRep->CreateMachineBasicBlock();
funcRep->push_back(landBlk); //insert to function
if (trueBlk) {
trueBlk->addSuccessor(landBlk);
} else {
headBlk->addSuccessor(landBlk);
}
if (falseBlk) {
falseBlk->addSuccessor(landBlk);
} else {
headBlk->addSuccessor(landBlk);
}
numNewBlk ++;
}
bool landBlkHasOtherPred = (landBlk->pred_size() > 2);
//insert AMDGPU::ENDIF to avoid special case "input landBlk == NULL"
typename BlockT::iterator insertPos =
CFGTraits::getInstrPos
(landBlk, CFGTraits::insertInstrBefore(landBlk, AMDGPU::ENDIF, passRep));
if (landBlkHasOtherPred) {
unsigned immReg =
funcRep->getRegInfo().createVirtualRegister(I32RC);
CFGTraits::insertAssignInstrBefore(insertPos, passRep, immReg, 2);
unsigned cmpResReg =
funcRep->getRegInfo().createVirtualRegister(I32RC);
CFGTraits::insertCompareInstrBefore(landBlk, insertPos, passRep, cmpResReg,
initReg, immReg);
CFGTraits::insertCondBranchBefore(landBlk, insertPos,
AMDGPU::IF_PREDICATE_SET, passRep,
cmpResReg, DebugLoc());
}
CFGTraits::insertCondBranchBefore(landBlk, insertPos, AMDGPU::IF_PREDICATE_SET,
passRep, initReg, DebugLoc());
if (migrateTrue) {
migrateInstruction(trueBlk, landBlk, insertPos);
// need to uncondionally insert the assignment to ensure a path from its
// predecessor rather than headBlk has valid value in initReg if
// (initVal != 1).
CFGTraits::insertAssignInstrBefore(trueBlk, passRep, initReg, 1);
}
CFGTraits::insertInstrBefore(insertPos, AMDGPU::ELSE, passRep);
if (migrateFalse) {
migrateInstruction(falseBlk, landBlk, insertPos);
// need to uncondionally insert the assignment to ensure a path from its
// predecessor rather than headBlk has valid value in initReg if
// (initVal != 0)
CFGTraits::insertAssignInstrBefore(falseBlk, passRep, initReg, 0);
}
if (landBlkHasOtherPred) {
// add endif
CFGTraits::insertInstrBefore(insertPos, AMDGPU::ENDIF, passRep);
// put initReg = 2 to other predecessors of landBlk
for (typename BlockT::pred_iterator predIter = landBlk->pred_begin(),
predIterEnd = landBlk->pred_end(); predIter != predIterEnd;
++predIter) {
BlockT *curBlk = *predIter;
if (curBlk != trueBlk && curBlk != falseBlk) {
CFGTraits::insertAssignInstrBefore(curBlk, passRep, initReg, 2);
}
} //for
}
if (DEBUGME) {
errs() << "result from improveSimpleJumpintoIf: ";
showImproveSimpleJumpintoIf(headBlk, trueBlk, falseBlk, landBlk, 0);
}
// update landBlk
*plandBlk = landBlk;
return numNewBlk;
} //improveSimpleJumpintoIf
template<class PassT>
void CFGStructurizer<PassT>::handleLoopbreak(BlockT *exitingBlk,
LoopT *exitingLoop,
BlockT *exitBlk,
LoopT *exitLoop,
BlockT *landBlk) {
if (DEBUGME) {
errs() << "Trying to break loop-depth = " << getLoopDepth(exitLoop)
<< " from loop-depth = " << getLoopDepth(exitingLoop) << "\n";
}
const TargetRegisterClass * I32RC = TRI->getCFGStructurizerRegClass(MVT::i32);
RegiT initReg = INVALIDREGNUM;
if (exitingLoop != exitLoop) {
initReg = static_cast<int>
(funcRep->getRegInfo().createVirtualRegister(I32RC));
assert(initReg != INVALIDREGNUM);
addLoopBreakInitReg(exitLoop, initReg);
while (exitingLoop != exitLoop && exitingLoop) {
addLoopBreakOnReg(exitingLoop, initReg);
exitingLoop = exitingLoop->getParentLoop();
}
assert(exitingLoop == exitLoop);
}
mergeLoopbreakBlock(exitingBlk, exitBlk, landBlk, initReg);
} //handleLoopbreak
template<class PassT>
void CFGStructurizer<PassT>::handleLoopcontBlock(BlockT *contingBlk,
LoopT *contingLoop,
BlockT *contBlk,
LoopT *contLoop) {
if (DEBUGME) {
errs() << "loopcontPattern cont = BB" << contingBlk->getNumber()
<< " header = BB" << contBlk->getNumber() << "\n";
errs() << "Trying to continue loop-depth = "
<< getLoopDepth(contLoop)
<< " from loop-depth = " << getLoopDepth(contingLoop) << "\n";
}
RegiT initReg = INVALIDREGNUM;
const TargetRegisterClass * I32RC = TRI->getCFGStructurizerRegClass(MVT::i32);
if (contingLoop != contLoop) {
initReg = static_cast<int>
(funcRep->getRegInfo().createVirtualRegister(I32RC));
assert(initReg != INVALIDREGNUM);
addLoopContInitReg(contLoop, initReg);
while (contingLoop && contingLoop->getParentLoop() != contLoop) {
addLoopBreakOnReg(contingLoop, initReg); //not addLoopContOnReg
contingLoop = contingLoop->getParentLoop();
}
assert(contingLoop && contingLoop->getParentLoop() == contLoop);
addLoopContOnReg(contingLoop, initReg);
}
settleLoopcontBlock(contingBlk, contBlk, initReg);
} //handleLoopcontBlock
template<class PassT>
void CFGStructurizer<PassT>::mergeSerialBlock(BlockT *dstBlk, BlockT *srcBlk) {
if (DEBUGME) {
errs() << "serialPattern BB" << dstBlk->getNumber()
<< " <= BB" << srcBlk->getNumber() << "\n";
}
dstBlk->splice(dstBlk->end(), srcBlk, srcBlk->begin(), srcBlk->end());
dstBlk->removeSuccessor(srcBlk);
CFGTraits::cloneSuccessorList(dstBlk, srcBlk);
removeSuccessor(srcBlk);
retireBlock(dstBlk, srcBlk);
} //mergeSerialBlock
template<class PassT>
void CFGStructurizer<PassT>::mergeIfthenelseBlock(InstrT *branchInstr,
BlockT *curBlk,
BlockT *trueBlk,
BlockT *falseBlk,
BlockT *landBlk) {
if (DEBUGME) {
errs() << "ifPattern BB" << curBlk->getNumber();
errs() << "{ ";
if (trueBlk) {
errs() << "BB" << trueBlk->getNumber();
}
errs() << " } else ";
errs() << "{ ";
if (falseBlk) {
errs() << "BB" << falseBlk->getNumber();
}
errs() << " }\n ";
errs() << "landBlock: ";
if (landBlk == NULL) {
errs() << "NULL";
} else {
errs() << "BB" << landBlk->getNumber();
}
errs() << "\n";
}
int oldOpcode = branchInstr->getOpcode();
DebugLoc branchDL = branchInstr->getDebugLoc();
// transform to
// if cond
// trueBlk
// else
// falseBlk
// endif
// landBlk
typename BlockT::iterator branchInstrPos =
CFGTraits::getInstrPos(curBlk, branchInstr);
CFGTraits::insertCondBranchBefore(branchInstrPos,
CFGTraits::getBranchNzeroOpcode(oldOpcode),
passRep,
branchDL);
if (trueBlk) {
curBlk->splice(branchInstrPos, trueBlk, trueBlk->begin(), trueBlk->end());
curBlk->removeSuccessor(trueBlk);
if (landBlk && trueBlk->succ_size()!=0) {
trueBlk->removeSuccessor(landBlk);
}
retireBlock(curBlk, trueBlk);
}
CFGTraits::insertInstrBefore(branchInstrPos, AMDGPU::ELSE, passRep);
if (falseBlk) {
curBlk->splice(branchInstrPos, falseBlk, falseBlk->begin(),
falseBlk->end());
curBlk->removeSuccessor(falseBlk);
if (landBlk && falseBlk->succ_size() != 0) {
falseBlk->removeSuccessor(landBlk);
}
retireBlock(curBlk, falseBlk);
}
CFGTraits::insertInstrBefore(branchInstrPos, AMDGPU::ENDIF, passRep);
branchInstr->eraseFromParent();
if (landBlk && trueBlk && falseBlk) {
curBlk->addSuccessor(landBlk);
}
} //mergeIfthenelseBlock
template<class PassT>
void CFGStructurizer<PassT>::mergeLooplandBlock(BlockT *dstBlk,
LoopLandInfo *loopLand) {
BlockT *landBlk = loopLand->landBlk;
if (DEBUGME) {
errs() << "loopPattern header = BB" << dstBlk->getNumber()
<< " land = BB" << landBlk->getNumber() << "\n";
}
// Loop contInitRegs are init at the beginning of the loop.
for (typename std::set<RegiT>::const_iterator iter =
loopLand->contInitRegs.begin(),
iterEnd = loopLand->contInitRegs.end(); iter != iterEnd; ++iter) {
CFGTraits::insertAssignInstrBefore(dstBlk, passRep, *iter, 0);
}
/* we last inserterd the DebugLoc in the
* BREAK_LOGICALZ_i32 or AMDGPU::BREAK_LOGICALNZ statement in the current dstBlk.
* search for the DebugLoc in the that statement.
* if not found, we have to insert the empty/default DebugLoc */
InstrT *loopBreakInstr = CFGTraits::getLoopBreakInstr(dstBlk);
DebugLoc DLBreak = (loopBreakInstr) ? loopBreakInstr->getDebugLoc() : DebugLoc();
CFGTraits::insertInstrBefore(dstBlk, AMDGPU::WHILELOOP, passRep, DLBreak);
// Loop breakInitRegs are init before entering the loop.
for (typename std::set<RegiT>::const_iterator iter =
loopLand->breakInitRegs.begin(),
iterEnd = loopLand->breakInitRegs.end(); iter != iterEnd; ++iter) {
CFGTraits::insertAssignInstrBefore(dstBlk, passRep, *iter, 0);
}
// Loop endbranchInitRegs are init before entering the loop.
for (typename std::set<RegiT>::const_iterator iter =
loopLand->endbranchInitRegs.begin(),
iterEnd = loopLand->endbranchInitRegs.end(); iter != iterEnd; ++iter) {
CFGTraits::insertAssignInstrBefore(dstBlk, passRep, *iter, 0);
}
/* we last inserterd the DebugLoc in the continue statement in the current dstBlk
* search for the DebugLoc in the continue statement.
* if not found, we have to insert the empty/default DebugLoc */
InstrT *continueInstr = CFGTraits::getContinueInstr(dstBlk);
DebugLoc DLContinue = (continueInstr) ? continueInstr->getDebugLoc() : DebugLoc();
CFGTraits::insertInstrEnd(dstBlk, AMDGPU::ENDLOOP, passRep, DLContinue);
// Loop breakOnRegs are check after the ENDLOOP: break the loop outside this
// loop.
for (typename std::set<RegiT>::const_iterator iter =
loopLand->breakOnRegs.begin(),
iterEnd = loopLand->breakOnRegs.end(); iter != iterEnd; ++iter) {
CFGTraits::insertCondBranchEnd(dstBlk, AMDGPU::PREDICATED_BREAK, passRep,
*iter);
}
// Loop contOnRegs are check after the ENDLOOP: cont the loop outside this
// loop.
for (std::set<RegiT>::const_iterator iter = loopLand->contOnRegs.begin(),
iterEnd = loopLand->contOnRegs.end(); iter != iterEnd; ++iter) {
CFGTraits::insertCondBranchEnd(dstBlk, AMDGPU::CONTINUE_LOGICALNZ_i32,
passRep, *iter);
}
dstBlk->splice(dstBlk->end(), landBlk, landBlk->begin(), landBlk->end());
for (typename BlockT::succ_iterator iter = landBlk->succ_begin(),
iterEnd = landBlk->succ_end(); iter != iterEnd; ++iter) {
dstBlk->addSuccessor(*iter); // *iter's predecessor is also taken care of.
}
removeSuccessor(landBlk);
retireBlock(dstBlk, landBlk);
} //mergeLooplandBlock
template<class PassT>
void CFGStructurizer<PassT>::reversePredicateSetter(typename BlockT::iterator I) {
while (I--) {
if (I->getOpcode() == AMDGPU::PRED_X) {
switch (static_cast<MachineInstr *>(I)->getOperand(2).getImm()) {
case OPCODE_IS_ZERO_INT:
static_cast<MachineInstr *>(I)->getOperand(2).setImm(OPCODE_IS_NOT_ZERO_INT);
return;
case OPCODE_IS_NOT_ZERO_INT:
static_cast<MachineInstr *>(I)->getOperand(2).setImm(OPCODE_IS_ZERO_INT);
return;
case OPCODE_IS_ZERO:
static_cast<MachineInstr *>(I)->getOperand(2).setImm(OPCODE_IS_NOT_ZERO);
return;
case OPCODE_IS_NOT_ZERO:
static_cast<MachineInstr *>(I)->getOperand(2).setImm(OPCODE_IS_ZERO);
return;
default:
assert(0 && "PRED_X Opcode invalid!");
}
}
}
}
template<class PassT>
void CFGStructurizer<PassT>::mergeLoopbreakBlock(BlockT *exitingBlk,
BlockT *exitBlk,
BlockT *exitLandBlk,
RegiT setReg) {
if (DEBUGME) {
errs() << "loopbreakPattern exiting = BB" << exitingBlk->getNumber()
<< " exit = BB" << exitBlk->getNumber()
<< " land = BB" << exitLandBlk->getNumber() << "\n";
}
InstrT *branchInstr = CFGTraits::getLoopendBlockBranchInstr(exitingBlk);
assert(branchInstr && CFGTraits::isCondBranch(branchInstr));
DebugLoc DL = branchInstr->getDebugLoc();
BlockT *trueBranch = CFGTraits::getTrueBranch(branchInstr);
// transform exitingBlk to
// if ( ) {
// exitBlk (if exitBlk != exitLandBlk)
// setReg = 1
// break
// }endif
// successor = {orgSuccessor(exitingBlk) - exitBlk}
typename BlockT::iterator branchInstrPos =
CFGTraits::getInstrPos(exitingBlk, branchInstr);
if (exitBlk == exitLandBlk && setReg == INVALIDREGNUM) {
//break_logical
if (trueBranch != exitBlk) {
reversePredicateSetter(branchInstrPos);
}
CFGTraits::insertCondBranchBefore(branchInstrPos, AMDGPU::PREDICATED_BREAK, passRep, DL);
} else {
if (trueBranch != exitBlk) {
reversePredicateSetter(branchInstr);
}
CFGTraits::insertCondBranchBefore(branchInstrPos, AMDGPU::PREDICATED_BREAK, passRep, DL);
if (exitBlk != exitLandBlk) {
//splice is insert-before ...
exitingBlk->splice(branchInstrPos, exitBlk, exitBlk->begin(),
exitBlk->end());
}
if (setReg != INVALIDREGNUM) {
CFGTraits::insertAssignInstrBefore(branchInstrPos, passRep, setReg, 1);
}
CFGTraits::insertInstrBefore(branchInstrPos, AMDGPU::BREAK, passRep);
} //if_logical
//now branchInst can be erase safely
branchInstr->eraseFromParent();
//now take care of successors, retire blocks
exitingBlk->removeSuccessor(exitBlk);
if (exitBlk != exitLandBlk) {
//splice is insert-before ...
exitBlk->removeSuccessor(exitLandBlk);
retireBlock(exitingBlk, exitBlk);
}
} //mergeLoopbreakBlock
template<class PassT>
void CFGStructurizer<PassT>::settleLoopcontBlock(BlockT *contingBlk,
BlockT *contBlk,
RegiT setReg) {
if (DEBUGME) {
errs() << "settleLoopcontBlock conting = BB"
<< contingBlk->getNumber()
<< ", cont = BB" << contBlk->getNumber() << "\n";
}
InstrT *branchInstr = CFGTraits::getLoopendBlockBranchInstr(contingBlk);
if (branchInstr) {
assert(CFGTraits::isCondBranch(branchInstr));
typename BlockT::iterator branchInstrPos =
CFGTraits::getInstrPos(contingBlk, branchInstr);
BlockT *trueBranch = CFGTraits::getTrueBranch(branchInstr);
int oldOpcode = branchInstr->getOpcode();
DebugLoc DL = branchInstr->getDebugLoc();
// transform contingBlk to
// if () {
// move instr after branchInstr
// continue
// or
// setReg = 1
// break
// }endif
// successor = {orgSuccessor(contingBlk) - loopHeader}
bool useContinueLogical =
(setReg == INVALIDREGNUM && (&*contingBlk->rbegin()) == branchInstr);
if (useContinueLogical == false) {
int branchOpcode =
trueBranch == contBlk ? CFGTraits::getBranchNzeroOpcode(oldOpcode)
: CFGTraits::getBranchZeroOpcode(oldOpcode);
CFGTraits::insertCondBranchBefore(branchInstrPos, branchOpcode, passRep, DL);
if (setReg != INVALIDREGNUM) {
CFGTraits::insertAssignInstrBefore(branchInstrPos, passRep, setReg, 1);
// insertEnd to ensure phi-moves, if exist, go before the continue-instr.
CFGTraits::insertInstrEnd(contingBlk, AMDGPU::BREAK, passRep, DL);
} else {
// insertEnd to ensure phi-moves, if exist, go before the continue-instr.
CFGTraits::insertInstrEnd(contingBlk, AMDGPU::CONTINUE, passRep, DL);
}
CFGTraits::insertInstrEnd(contingBlk, AMDGPU::ENDIF, passRep, DL);
} else {
int branchOpcode =
trueBranch == contBlk ? CFGTraits::getContinueNzeroOpcode(oldOpcode)
: CFGTraits::getContinueZeroOpcode(oldOpcode);
CFGTraits::insertCondBranchBefore(branchInstrPos, branchOpcode, passRep, DL);
}
branchInstr->eraseFromParent();
} else {
// if we've arrived here then we've already erased the branch instruction
// travel back up the basic block to see the last reference of our debug location
// we've just inserted that reference here so it should be representative
if (setReg != INVALIDREGNUM) {
CFGTraits::insertAssignInstrBefore(contingBlk, passRep, setReg, 1);
// insertEnd to ensure phi-moves, if exist, go before the continue-instr.
CFGTraits::insertInstrEnd(contingBlk, AMDGPU::BREAK, passRep, CFGTraits::getLastDebugLocInBB(contingBlk));
} else {
// insertEnd to ensure phi-moves, if exist, go before the continue-instr.
CFGTraits::insertInstrEnd(contingBlk, AMDGPU::CONTINUE, passRep, CFGTraits::getLastDebugLocInBB(contingBlk));
}
} //else
} //settleLoopcontBlock
// BBs in exitBlkSet are determined as in break-path for loopRep,
// before we can put code for BBs as inside loop-body for loopRep
// check whether those BBs are determined as cont-BB for parentLoopRep
// earlier.
// If so, generate a new BB newBlk
// (1) set newBlk common successor of BBs in exitBlkSet
// (2) change the continue-instr in BBs in exitBlkSet to break-instr
// (3) generate continue-instr in newBlk
//
template<class PassT>
typename CFGStructurizer<PassT>::BlockT *
CFGStructurizer<PassT>::relocateLoopcontBlock(LoopT *parentLoopRep,
LoopT *loopRep,
std::set<BlockT *> &exitBlkSet,
BlockT *exitLandBlk) {
std::set<BlockT *> endBlkSet;
for (typename std::set<BlockT *>::const_iterator iter = exitBlkSet.begin(),
iterEnd = exitBlkSet.end();
iter != iterEnd; ++iter) {
BlockT *exitBlk = *iter;
BlockT *endBlk = singlePathEnd(exitBlk, exitLandBlk);
if (endBlk == NULL || CFGTraits::getContinueInstr(endBlk) == NULL)
return NULL;
endBlkSet.insert(endBlk);
}
BlockT *newBlk = funcRep->CreateMachineBasicBlock();
funcRep->push_back(newBlk); //insert to function
CFGTraits::insertInstrEnd(newBlk, AMDGPU::CONTINUE, passRep);
SHOWNEWBLK(newBlk, "New continue block: ");
for (typename std::set<BlockT*>::const_iterator iter = endBlkSet.begin(),
iterEnd = endBlkSet.end();
iter != iterEnd; ++iter) {
BlockT *endBlk = *iter;
InstrT *contInstr = CFGTraits::getContinueInstr(endBlk);
if (contInstr) {
contInstr->eraseFromParent();
}
endBlk->addSuccessor(newBlk);
if (DEBUGME) {
errs() << "Add new continue Block to BB"
<< endBlk->getNumber() << " successors\n";
}
}
return newBlk;
} //relocateLoopcontBlock
// LoopEndbranchBlock is a BB created by the CFGStructurizer to use as
// LoopLandBlock. This BB branch on the loop endBranchInit register to the
// pathes corresponding to the loop exiting branches.
template<class PassT>
typename CFGStructurizer<PassT>::BlockT *
CFGStructurizer<PassT>::addLoopEndbranchBlock(LoopT *loopRep,
BlockTSmallerVector &exitingBlks,
BlockTSmallerVector &exitBlks) {
const AMDGPUInstrInfo *tii =
static_cast<const AMDGPUInstrInfo *>(passRep->getTargetInstrInfo());
const TargetRegisterClass * I32RC = TRI->getCFGStructurizerRegClass(MVT::i32);
RegiT endBranchReg = static_cast<int>
(funcRep->getRegInfo().createVirtualRegister(I32RC));
assert(endBranchReg >= 0);
// reg = 0 before entering the loop
addLoopEndbranchInitReg(loopRep, endBranchReg);
uint32_t numBlks = static_cast<uint32_t>(exitingBlks.size());
assert(numBlks >=2 && numBlks == exitBlks.size());
BlockT *preExitingBlk = exitingBlks[0];
BlockT *preExitBlk = exitBlks[0];
BlockT *preBranchBlk = funcRep->CreateMachineBasicBlock();
funcRep->push_back(preBranchBlk); //insert to function
SHOWNEWBLK(preBranchBlk, "New loopEndbranch block: ");
BlockT *newLandBlk = preBranchBlk;
CFGTraits::replaceInstrUseOfBlockWith(preExitingBlk, preExitBlk,
newLandBlk);
preExitingBlk->removeSuccessor(preExitBlk);
preExitingBlk->addSuccessor(newLandBlk);
//it is redundant to add reg = 0 to exitingBlks[0]
// For 1..n th exiting path (the last iteration handles two pathes) create the
// branch to the previous path and the current path.
for (uint32_t i = 1; i < numBlks; ++i) {
BlockT *curExitingBlk = exitingBlks[i];
BlockT *curExitBlk = exitBlks[i];
BlockT *curBranchBlk;
if (i == numBlks - 1) {
curBranchBlk = curExitBlk;
} else {
curBranchBlk = funcRep->CreateMachineBasicBlock();
funcRep->push_back(curBranchBlk); //insert to function
SHOWNEWBLK(curBranchBlk, "New loopEndbranch block: ");
}
// Add reg = i to exitingBlks[i].
CFGTraits::insertAssignInstrBefore(curExitingBlk, passRep,
endBranchReg, i);
// Remove the edge (exitingBlks[i] exitBlks[i]) add new edge
// (exitingBlks[i], newLandBlk).
CFGTraits::replaceInstrUseOfBlockWith(curExitingBlk, curExitBlk,
newLandBlk);
curExitingBlk->removeSuccessor(curExitBlk);
curExitingBlk->addSuccessor(newLandBlk);
// add to preBranchBlk the branch instruction:
// if (endBranchReg == preVal)
// preExitBlk
// else
// curBranchBlk
//
// preValReg = i - 1
DebugLoc DL;
RegiT preValReg = static_cast<int>
(funcRep->getRegInfo().createVirtualRegister(I32RC));
preBranchBlk->insert(preBranchBlk->begin(),
tii->getMovImmInstr(preBranchBlk->getParent(), preValReg,
i - 1));
// condResReg = (endBranchReg == preValReg)
RegiT condResReg = static_cast<int>
(funcRep->getRegInfo().createVirtualRegister(I32RC));
BuildMI(preBranchBlk, DL, tii->get(tii->getIEQOpcode()), condResReg)
.addReg(endBranchReg).addReg(preValReg);
BuildMI(preBranchBlk, DL, tii->get(AMDGPU::BRANCH_COND_i32))
.addMBB(preExitBlk).addReg(condResReg);
preBranchBlk->addSuccessor(preExitBlk);
preBranchBlk->addSuccessor(curBranchBlk);
// Update preExitingBlk, preExitBlk, preBranchBlk.
preExitingBlk = curExitingBlk;
preExitBlk = curExitBlk;
preBranchBlk = curBranchBlk;
} //end for 1 .. n blocks
return newLandBlk;
} //addLoopEndbranchBlock
template<class PassT>
typename CFGStructurizer<PassT>::PathToKind
CFGStructurizer<PassT>::singlePathTo(BlockT *srcBlk, BlockT *dstBlk,
bool allowSideEntry) {
assert(dstBlk);
if (srcBlk == dstBlk) {
return SinglePath_InPath;
}
while (srcBlk && srcBlk->succ_size() == 1) {
srcBlk = *srcBlk->succ_begin();
if (srcBlk == dstBlk) {
return SinglePath_InPath;
}
if (!allowSideEntry && srcBlk->pred_size() > 1) {
return Not_SinglePath;
}
}
if (srcBlk && srcBlk->succ_size()==0) {
return SinglePath_NotInPath;
}
return Not_SinglePath;
} //singlePathTo
// If there is a single path from srcBlk to dstBlk, return the last block before
// dstBlk If there is a single path from srcBlk->end without dstBlk, return the
// last block in the path Otherwise, return NULL
template<class PassT>
typename CFGStructurizer<PassT>::BlockT *
CFGStructurizer<PassT>::singlePathEnd(BlockT *srcBlk, BlockT *dstBlk,
bool allowSideEntry) {
assert(dstBlk);
if (srcBlk == dstBlk) {
return srcBlk;
}
if (srcBlk->succ_size() == 0) {
return srcBlk;
}
while (srcBlk && srcBlk->succ_size() == 1) {
BlockT *preBlk = srcBlk;
srcBlk = *srcBlk->succ_begin();
if (srcBlk == NULL) {
return preBlk;
}
if (!allowSideEntry && srcBlk->pred_size() > 1) {
return NULL;
}
}
if (srcBlk && srcBlk->succ_size()==0) {
return srcBlk;
}
return NULL;
} //singlePathEnd
template<class PassT>
int CFGStructurizer<PassT>::cloneOnSideEntryTo(BlockT *preBlk, BlockT *srcBlk,
BlockT *dstBlk) {
int cloned = 0;
assert(preBlk->isSuccessor(srcBlk));
while (srcBlk && srcBlk != dstBlk) {
assert(srcBlk->succ_size() == 1);
if (srcBlk->pred_size() > 1) {
srcBlk = cloneBlockForPredecessor(srcBlk, preBlk);
++cloned;
}
preBlk = srcBlk;
srcBlk = *srcBlk->succ_begin();
}
return cloned;
} //cloneOnSideEntryTo
template<class PassT>
typename CFGStructurizer<PassT>::BlockT *
CFGStructurizer<PassT>::cloneBlockForPredecessor(BlockT *curBlk,
BlockT *predBlk) {
assert(predBlk->isSuccessor(curBlk) &&
"succBlk is not a prececessor of curBlk");
BlockT *cloneBlk = CFGTraits::clone(curBlk); //clone instructions
CFGTraits::replaceInstrUseOfBlockWith(predBlk, curBlk, cloneBlk);
//srcBlk, oldBlk, newBlk
predBlk->removeSuccessor(curBlk);
predBlk->addSuccessor(cloneBlk);
// add all successor to cloneBlk
CFGTraits::cloneSuccessorList(cloneBlk, curBlk);
numClonedInstr += curBlk->size();
if (DEBUGME) {
errs() << "Cloned block: " << "BB"
<< curBlk->getNumber() << "size " << curBlk->size() << "\n";
}
SHOWNEWBLK(cloneBlk, "result of Cloned block: ");
return cloneBlk;
} //cloneBlockForPredecessor
template<class PassT>
typename CFGStructurizer<PassT>::BlockT *
CFGStructurizer<PassT>::exitingBlock2ExitBlock(LoopT *loopRep,
BlockT *exitingBlk) {
BlockT *exitBlk = NULL;
for (typename BlockT::succ_iterator iterSucc = exitingBlk->succ_begin(),
iterSuccEnd = exitingBlk->succ_end();
iterSucc != iterSuccEnd; ++iterSucc) {
BlockT *curBlk = *iterSucc;
if (!loopRep->contains(curBlk)) {
assert(exitBlk == NULL);
exitBlk = curBlk;
}
}
assert(exitBlk != NULL);
return exitBlk;
} //exitingBlock2ExitBlock
template<class PassT>
void CFGStructurizer<PassT>::migrateInstruction(BlockT *srcBlk,
BlockT *dstBlk,
InstrIterator insertPos) {
InstrIterator spliceEnd;
//look for the input branchinstr, not the AMDGPU branchinstr
InstrT *branchInstr = CFGTraits::getNormalBlockBranchInstr(srcBlk);
if (branchInstr == NULL) {
if (DEBUGME) {
errs() << "migrateInstruction don't see branch instr\n" ;
}
spliceEnd = srcBlk->end();
} else {
if (DEBUGME) {
errs() << "migrateInstruction see branch instr\n" ;
branchInstr->dump();
}
spliceEnd = CFGTraits::getInstrPos(srcBlk, branchInstr);
}
if (DEBUGME) {
errs() << "migrateInstruction before splice dstSize = " << dstBlk->size()
<< "srcSize = " << srcBlk->size() << "\n";
}
//splice insert before insertPos
dstBlk->splice(insertPos, srcBlk, srcBlk->begin(), spliceEnd);
if (DEBUGME) {
errs() << "migrateInstruction after splice dstSize = " << dstBlk->size()
<< "srcSize = " << srcBlk->size() << "\n";
}
} //migrateInstruction
// normalizeInfiniteLoopExit change
// B1:
// uncond_br LoopHeader
//
// to
// B1:
// cond_br 1 LoopHeader dummyExit
// and return the newly added dummy exit block
//
template<class PassT>
typename CFGStructurizer<PassT>::BlockT *
CFGStructurizer<PassT>::normalizeInfiniteLoopExit(LoopT* LoopRep) {
BlockT *loopHeader;
BlockT *loopLatch;
loopHeader = LoopRep->getHeader();
loopLatch = LoopRep->getLoopLatch();
BlockT *dummyExitBlk = NULL;
const TargetRegisterClass * I32RC = TRI->getCFGStructurizerRegClass(MVT::i32);
if (loopHeader!=NULL && loopLatch!=NULL) {
InstrT *branchInstr = CFGTraits::getLoopendBlockBranchInstr(loopLatch);
if (branchInstr!=NULL && CFGTraits::isUncondBranch(branchInstr)) {
dummyExitBlk = funcRep->CreateMachineBasicBlock();
funcRep->push_back(dummyExitBlk); //insert to function
SHOWNEWBLK(dummyExitBlk, "DummyExitBlock to normalize infiniteLoop: ");
if (DEBUGME) errs() << "Old branch instr: " << *branchInstr << "\n";
typename BlockT::iterator insertPos =
CFGTraits::getInstrPos(loopLatch, branchInstr);
unsigned immReg =
funcRep->getRegInfo().createVirtualRegister(I32RC);
CFGTraits::insertAssignInstrBefore(insertPos, passRep, immReg, 1);
InstrT *newInstr =
CFGTraits::insertInstrBefore(insertPos, AMDGPU::BRANCH_COND_i32, passRep);
MachineInstrBuilder MIB(*funcRep, newInstr);
MIB.addMBB(loopHeader);
MIB.addReg(immReg, false);
SHOWNEWINSTR(newInstr);
branchInstr->eraseFromParent();
loopLatch->addSuccessor(dummyExitBlk);
}
}
return dummyExitBlk;
} //normalizeInfiniteLoopExit
template<class PassT>
void CFGStructurizer<PassT>::removeUnconditionalBranch(BlockT *srcBlk) {
InstrT *branchInstr;
// I saw two unconditional branch in one basic block in example
// test_fc_do_while_or.c need to fix the upstream on this to remove the loop.
while ((branchInstr = CFGTraits::getLoopendBlockBranchInstr(srcBlk))
&& CFGTraits::isUncondBranch(branchInstr)) {
if (DEBUGME) {
errs() << "Removing unconditional branch instruction" ;
branchInstr->dump();
}
branchInstr->eraseFromParent();
}
} //removeUnconditionalBranch
template<class PassT>
void CFGStructurizer<PassT>::removeRedundantConditionalBranch(BlockT *srcBlk) {
if (srcBlk->succ_size() == 2) {
BlockT *blk1 = *srcBlk->succ_begin();
BlockT *blk2 = *(++srcBlk->succ_begin());
if (blk1 == blk2) {
InstrT *branchInstr = CFGTraits::getNormalBlockBranchInstr(srcBlk);
assert(branchInstr && CFGTraits::isCondBranch(branchInstr));
if (DEBUGME) {
errs() << "Removing unneeded conditional branch instruction" ;
branchInstr->dump();
}
branchInstr->eraseFromParent();
SHOWNEWBLK(blk1, "Removing redundant successor");
srcBlk->removeSuccessor(blk1);
}
}
} //removeRedundantConditionalBranch
template<class PassT>
void CFGStructurizer<PassT>::addDummyExitBlock(SmallVector<BlockT*,
DEFAULT_VEC_SLOTS> &retBlks) {
BlockT *dummyExitBlk = funcRep->CreateMachineBasicBlock();
funcRep->push_back(dummyExitBlk); //insert to function
CFGTraits::insertInstrEnd(dummyExitBlk, AMDGPU::RETURN, passRep);
for (typename SmallVector<BlockT *, DEFAULT_VEC_SLOTS>::iterator iter =
retBlks.begin(),
iterEnd = retBlks.end(); iter != iterEnd; ++iter) {
BlockT *curBlk = *iter;
InstrT *curInstr = CFGTraits::getReturnInstr(curBlk);
if (curInstr) {
curInstr->eraseFromParent();
}
curBlk->addSuccessor(dummyExitBlk);
if (DEBUGME) {
errs() << "Add dummyExitBlock to BB" << curBlk->getNumber()
<< " successors\n";
}
} //for
SHOWNEWBLK(dummyExitBlk, "DummyExitBlock: ");
} //addDummyExitBlock
template<class PassT>
void CFGStructurizer<PassT>::removeSuccessor(BlockT *srcBlk) {
while (srcBlk->succ_size()) {
srcBlk->removeSuccessor(*srcBlk->succ_begin());
}
}
template<class PassT>
void CFGStructurizer<PassT>::recordSccnum(BlockT *srcBlk, int sccNum) {
BlockInfo *&srcBlkInfo = blockInfoMap[srcBlk];
if (srcBlkInfo == NULL) {
srcBlkInfo = new BlockInfo();
}
srcBlkInfo->sccNum = sccNum;
}
template<class PassT>
int CFGStructurizer<PassT>::getSCCNum(BlockT *srcBlk) {
BlockInfo *srcBlkInfo = blockInfoMap[srcBlk];
return srcBlkInfo ? srcBlkInfo->sccNum : INVALIDSCCNUM;
}
template<class PassT>
void CFGStructurizer<PassT>::retireBlock(BlockT *dstBlk, BlockT *srcBlk) {
if (DEBUGME) {
errs() << "Retiring BB" << srcBlk->getNumber() << "\n";
}
BlockInfo *&srcBlkInfo = blockInfoMap[srcBlk];
if (srcBlkInfo == NULL) {
srcBlkInfo = new BlockInfo();
}
srcBlkInfo->isRetired = true;
assert(srcBlk->succ_size() == 0 && srcBlk->pred_size() == 0
&& "can't retire block yet");
}
template<class PassT>
bool CFGStructurizer<PassT>::isRetiredBlock(BlockT *srcBlk) {
BlockInfo *srcBlkInfo = blockInfoMap[srcBlk];
return (srcBlkInfo && srcBlkInfo->isRetired);
}
template<class PassT>
bool CFGStructurizer<PassT>::isActiveLoophead(BlockT *curBlk) {
LoopT *loopRep = loopInfo->getLoopFor(curBlk);
while (loopRep && loopRep->getHeader() == curBlk) {
LoopLandInfo *loopLand = getLoopLandInfo(loopRep);
if(loopLand == NULL)
return true;
BlockT *landBlk = loopLand->landBlk;
assert(landBlk);
if (!isRetiredBlock(landBlk)) {
return true;
}
loopRep = loopRep->getParentLoop();
}
return false;
} //isActiveLoophead
template<class PassT>
bool CFGStructurizer<PassT>::needMigrateBlock(BlockT *blk) {
const unsigned blockSizeThreshold = 30;
const unsigned cloneInstrThreshold = 100;
bool multiplePreds = blk && (blk->pred_size() > 1);
if(!multiplePreds)
return false;
unsigned blkSize = blk->size();
return ((blkSize > blockSizeThreshold)
&& (blkSize * (blk->pred_size() - 1) > cloneInstrThreshold));
} //needMigrateBlock
template<class PassT>
typename CFGStructurizer<PassT>::BlockT *
CFGStructurizer<PassT>::recordLoopLandBlock(LoopT *loopRep, BlockT *landBlk,
BlockTSmallerVector &exitBlks,
std::set<BlockT *> &exitBlkSet) {
SmallVector<BlockT *, DEFAULT_VEC_SLOTS> inpathBlks; //in exit path blocks
for (typename BlockT::pred_iterator predIter = landBlk->pred_begin(),
predIterEnd = landBlk->pred_end();
predIter != predIterEnd; ++predIter) {
BlockT *curBlk = *predIter;
if (loopRep->contains(curBlk) || exitBlkSet.count(curBlk)) {
inpathBlks.push_back(curBlk);
}
} //for
//if landBlk has predecessors that are not in the given loop,
//create a new block
BlockT *newLandBlk = landBlk;
if (inpathBlks.size() != landBlk->pred_size()) {
newLandBlk = funcRep->CreateMachineBasicBlock();
funcRep->push_back(newLandBlk); //insert to function
newLandBlk->addSuccessor(landBlk);
for (typename SmallVector<BlockT*, DEFAULT_VEC_SLOTS>::iterator iter =
inpathBlks.begin(),
iterEnd = inpathBlks.end(); iter != iterEnd; ++iter) {
BlockT *curBlk = *iter;
CFGTraits::replaceInstrUseOfBlockWith(curBlk, landBlk, newLandBlk);
//srcBlk, oldBlk, newBlk
curBlk->removeSuccessor(landBlk);
curBlk->addSuccessor(newLandBlk);
}
for (size_t i = 0, tot = exitBlks.size(); i < tot; ++i) {
if (exitBlks[i] == landBlk) {
exitBlks[i] = newLandBlk;
}
}
SHOWNEWBLK(newLandBlk, "NewLandingBlock: ");
}
setLoopLandBlock(loopRep, newLandBlk);
return newLandBlk;
} // recordLoopbreakLand
template<class PassT>
void CFGStructurizer<PassT>::setLoopLandBlock(LoopT *loopRep, BlockT *blk) {
LoopLandInfo *&theEntry = loopLandInfoMap[loopRep];
if (theEntry == NULL) {
theEntry = new LoopLandInfo();
}
assert(theEntry->landBlk == NULL);
if (blk == NULL) {
blk = funcRep->CreateMachineBasicBlock();
funcRep->push_back(blk); //insert to function
SHOWNEWBLK(blk, "DummyLandingBlock for loop without break: ");
}
theEntry->landBlk = blk;
if (DEBUGME) {
errs() << "setLoopLandBlock loop-header = BB"
<< loopRep->getHeader()->getNumber()
<< " landing-block = BB" << blk->getNumber() << "\n";
}
} // setLoopLandBlock
template<class PassT>
void CFGStructurizer<PassT>::addLoopBreakOnReg(LoopT *loopRep, RegiT regNum) {
LoopLandInfo *&theEntry = loopLandInfoMap[loopRep];
if (theEntry == NULL) {
theEntry = new LoopLandInfo();
}
theEntry->breakOnRegs.insert(regNum);
if (DEBUGME) {
errs() << "addLoopBreakOnReg loop-header = BB"
<< loopRep->getHeader()->getNumber()
<< " regNum = " << regNum << "\n";
}
} // addLoopBreakOnReg
template<class PassT>
void CFGStructurizer<PassT>::addLoopContOnReg(LoopT *loopRep, RegiT regNum) {
LoopLandInfo *&theEntry = loopLandInfoMap[loopRep];
if (theEntry == NULL) {
theEntry = new LoopLandInfo();
}
theEntry->contOnRegs.insert(regNum);
if (DEBUGME) {
errs() << "addLoopContOnReg loop-header = BB"
<< loopRep->getHeader()->getNumber()
<< " regNum = " << regNum << "\n";
}
} // addLoopContOnReg
template<class PassT>
void CFGStructurizer<PassT>::addLoopBreakInitReg(LoopT *loopRep, RegiT regNum) {
LoopLandInfo *&theEntry = loopLandInfoMap[loopRep];
if (theEntry == NULL) {
theEntry = new LoopLandInfo();
}
theEntry->breakInitRegs.insert(regNum);
if (DEBUGME) {
errs() << "addLoopBreakInitReg loop-header = BB"
<< loopRep->getHeader()->getNumber()
<< " regNum = " << regNum << "\n";
}
} // addLoopBreakInitReg
template<class PassT>
void CFGStructurizer<PassT>::addLoopContInitReg(LoopT *loopRep, RegiT regNum) {
LoopLandInfo *&theEntry = loopLandInfoMap[loopRep];
if (theEntry == NULL) {
theEntry = new LoopLandInfo();
}
theEntry->contInitRegs.insert(regNum);
if (DEBUGME) {
errs() << "addLoopContInitReg loop-header = BB"
<< loopRep->getHeader()->getNumber()
<< " regNum = " << regNum << "\n";
}
} // addLoopContInitReg
template<class PassT>
void CFGStructurizer<PassT>::addLoopEndbranchInitReg(LoopT *loopRep,
RegiT regNum) {
LoopLandInfo *&theEntry = loopLandInfoMap[loopRep];
if (theEntry == NULL) {
theEntry = new LoopLandInfo();
}
theEntry->endbranchInitRegs.insert(regNum);
if (DEBUGME) {
errs() << "addLoopEndbranchInitReg loop-header = BB"
<< loopRep->getHeader()->getNumber()
<< " regNum = " << regNum << "\n";
}
} // addLoopEndbranchInitReg
template<class PassT>
typename CFGStructurizer<PassT>::LoopLandInfo *
CFGStructurizer<PassT>::getLoopLandInfo(LoopT *loopRep) {
LoopLandInfo *&theEntry = loopLandInfoMap[loopRep];
return theEntry;
} // getLoopLandInfo
template<class PassT>
typename CFGStructurizer<PassT>::BlockT *
CFGStructurizer<PassT>::getLoopLandBlock(LoopT *loopRep) {
LoopLandInfo *&theEntry = loopLandInfoMap[loopRep];
return theEntry ? theEntry->landBlk : NULL;
} // getLoopLandBlock
template<class PassT>
bool CFGStructurizer<PassT>::hasBackEdge(BlockT *curBlk) {
LoopT *loopRep = loopInfo->getLoopFor(curBlk);
if (loopRep == NULL)
return false;
BlockT *loopHeader = loopRep->getHeader();
return curBlk->isSuccessor(loopHeader);
} //hasBackEdge
template<class PassT>
unsigned CFGStructurizer<PassT>::getLoopDepth(LoopT *loopRep) {
return loopRep ? loopRep->getLoopDepth() : 0;
} //getLoopDepth
template<class PassT>
int CFGStructurizer<PassT>::countActiveBlock
(typename SmallVector<BlockT*, DEFAULT_VEC_SLOTS>::const_iterator iterStart,
typename SmallVector<BlockT*, DEFAULT_VEC_SLOTS>::const_iterator iterEnd) {
int count = 0;
while (iterStart != iterEnd) {
if (!isRetiredBlock(*iterStart)) {
++count;
}
++iterStart;
}
return count;
} //countActiveBlock
// This is work around solution for findNearestCommonDominator not avaiable to
// post dom a proper fix should go to Dominators.h.
template<class PassT>
typename CFGStructurizer<PassT>::BlockT*
CFGStructurizer<PassT>::findNearestCommonPostDom(BlockT *blk1, BlockT *blk2) {
if (postDomTree->dominates(blk1, blk2)) {
return blk1;
}
if (postDomTree->dominates(blk2, blk1)) {
return blk2;
}
DomTreeNodeT *node1 = postDomTree->getNode(blk1);
DomTreeNodeT *node2 = postDomTree->getNode(blk2);
// Handle newly cloned node.
if (node1 == NULL && blk1->succ_size() == 1) {
return findNearestCommonPostDom(*blk1->succ_begin(), blk2);
}
if (node2 == NULL && blk2->succ_size() == 1) {
return findNearestCommonPostDom(blk1, *blk2->succ_begin());
}
if (node1 == NULL || node2 == NULL) {
return NULL;
}
node1 = node1->getIDom();
while (node1) {
if (postDomTree->dominates(node1, node2)) {
return node1->getBlock();
}
node1 = node1->getIDom();
}
return NULL;
}
template<class PassT>
typename CFGStructurizer<PassT>::BlockT *
CFGStructurizer<PassT>::findNearestCommonPostDom
(typename std::set<BlockT *> &blks) {
BlockT *commonDom;
typename std::set<BlockT *>::const_iterator iter = blks.begin();
typename std::set<BlockT *>::const_iterator iterEnd = blks.end();
for (commonDom = *iter; iter != iterEnd && commonDom != NULL; ++iter) {
BlockT *curBlk = *iter;
if (curBlk != commonDom) {
commonDom = findNearestCommonPostDom(curBlk, commonDom);
}
}
if (DEBUGME) {
errs() << "Common post dominator for exit blocks is ";
if (commonDom) {
errs() << "BB" << commonDom->getNumber() << "\n";
} else {
errs() << "NULL\n";
}
}
return commonDom;
} //findNearestCommonPostDom
} //end namespace llvm
//todo: move-end
//===----------------------------------------------------------------------===//
//
// CFGStructurizer for AMDGPU
//
//===----------------------------------------------------------------------===//
using namespace llvmCFGStruct;
namespace llvm {
class AMDGPUCFGStructurizer : public MachineFunctionPass {
public:
typedef MachineInstr InstructionType;
typedef MachineFunction FunctionType;
typedef MachineBasicBlock BlockType;
typedef MachineLoopInfo LoopinfoType;
typedef MachineDominatorTree DominatortreeType;
typedef MachinePostDominatorTree PostDominatortreeType;
typedef MachineDomTreeNode DomTreeNodeType;
typedef MachineLoop LoopType;
protected:
TargetMachine &TM;
const TargetInstrInfo *TII;
const AMDGPURegisterInfo *TRI;
public:
AMDGPUCFGStructurizer(char &pid, TargetMachine &tm);
const TargetInstrInfo *getTargetInstrInfo() const;
private:
};
} //end of namespace llvm
AMDGPUCFGStructurizer::AMDGPUCFGStructurizer(char &pid, TargetMachine &tm)
: MachineFunctionPass(pid), TM(tm), TII(tm.getInstrInfo()),
TRI(static_cast<const AMDGPURegisterInfo *>(tm.getRegisterInfo())) {
}
const TargetInstrInfo *AMDGPUCFGStructurizer::getTargetInstrInfo() const {
return TII;
}
//===----------------------------------------------------------------------===//
//
// CFGPrepare
//
//===----------------------------------------------------------------------===//
using namespace llvmCFGStruct;
namespace llvm {
class AMDGPUCFGPrepare : public AMDGPUCFGStructurizer {
public:
static char ID;
public:
AMDGPUCFGPrepare(TargetMachine &tm);
virtual const char *getPassName() const;
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
bool runOnMachineFunction(MachineFunction &F);
private:
};
char AMDGPUCFGPrepare::ID = 0;
} //end of namespace llvm
AMDGPUCFGPrepare::AMDGPUCFGPrepare(TargetMachine &tm)
: AMDGPUCFGStructurizer(ID, tm ) {
}
const char *AMDGPUCFGPrepare::getPassName() const {
return "AMD IL Control Flow Graph Preparation Pass";
}
void AMDGPUCFGPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<MachineFunctionAnalysis>();
AU.addRequired<MachineFunctionAnalysis>();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachinePostDominatorTree>();
AU.addRequired<MachineLoopInfo>();
}
//===----------------------------------------------------------------------===//
//
// CFGPerform
//
//===----------------------------------------------------------------------===//
using namespace llvmCFGStruct;
namespace llvm {
class AMDGPUCFGPerform : public AMDGPUCFGStructurizer {
public:
static char ID;
public:
AMDGPUCFGPerform(TargetMachine &tm);
virtual const char *getPassName() const;
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
bool runOnMachineFunction(MachineFunction &F);
private:
};
char AMDGPUCFGPerform::ID = 0;
} //end of namespace llvm
AMDGPUCFGPerform::AMDGPUCFGPerform(TargetMachine &tm)
: AMDGPUCFGStructurizer(ID, tm) {
}
const char *AMDGPUCFGPerform::getPassName() const {
return "AMD IL Control Flow Graph structurizer Pass";
}
void AMDGPUCFGPerform::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<MachineFunctionAnalysis>();
AU.addRequired<MachineFunctionAnalysis>();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachinePostDominatorTree>();
AU.addRequired<MachineLoopInfo>();
}
//===----------------------------------------------------------------------===//
//
// CFGStructTraits<AMDGPUCFGStructurizer>
//
//===----------------------------------------------------------------------===//
namespace llvmCFGStruct {
// this class is tailor to the AMDGPU backend
template<>
struct CFGStructTraits<AMDGPUCFGStructurizer> {
typedef int RegiT;
static int getBranchNzeroOpcode(int oldOpcode) {
switch(oldOpcode) {
case AMDGPU::JUMP_COND:
case AMDGPU::JUMP: return AMDGPU::IF_PREDICATE_SET;
case AMDGPU::BRANCH_COND_i32:
case AMDGPU::BRANCH_COND_f32: return AMDGPU::IF_LOGICALNZ_f32;
default:
assert(0 && "internal error");
}
return -1;
}
static int getBranchZeroOpcode(int oldOpcode) {
switch(oldOpcode) {
case AMDGPU::JUMP_COND:
case AMDGPU::JUMP: return AMDGPU::IF_PREDICATE_SET;
case AMDGPU::BRANCH_COND_i32:
case AMDGPU::BRANCH_COND_f32: return AMDGPU::IF_LOGICALZ_f32;
default:
assert(0 && "internal error");
}
return -1;
}
static int getContinueNzeroOpcode(int oldOpcode) {
switch(oldOpcode) {
case AMDGPU::JUMP_COND:
case AMDGPU::JUMP: return AMDGPU::CONTINUE_LOGICALNZ_i32;
default:
assert(0 && "internal error");
};
return -1;
}
static int getContinueZeroOpcode(int oldOpcode) {
switch(oldOpcode) {
case AMDGPU::JUMP_COND:
case AMDGPU::JUMP: return AMDGPU::CONTINUE_LOGICALZ_i32;
default:
assert(0 && "internal error");
}
return -1;
}
static MachineBasicBlock *getTrueBranch(MachineInstr *instr) {
return instr->getOperand(0).getMBB();
}
static void setTrueBranch(MachineInstr *instr, MachineBasicBlock *blk) {
instr->getOperand(0).setMBB(blk);
}
static MachineBasicBlock *
getFalseBranch(MachineBasicBlock *blk, MachineInstr *instr) {
assert(blk->succ_size() == 2);
MachineBasicBlock *trueBranch = getTrueBranch(instr);
MachineBasicBlock::succ_iterator iter = blk->succ_begin();
MachineBasicBlock::succ_iterator iterNext = iter;
++iterNext;
return (*iter == trueBranch) ? *iterNext : *iter;
}
static bool isCondBranch(MachineInstr *instr) {
switch (instr->getOpcode()) {
case AMDGPU::JUMP_COND:
case AMDGPU::BRANCH_COND_i32:
case AMDGPU::BRANCH_COND_f32:
break;
default:
return false;
}
return true;
}
static bool isUncondBranch(MachineInstr *instr) {
switch (instr->getOpcode()) {
case AMDGPU::JUMP:
case AMDGPU::BRANCH:
return true;
default:
return false;
}
return true;
}
static DebugLoc getLastDebugLocInBB(MachineBasicBlock *blk) {
//get DebugLoc from the first MachineBasicBlock instruction with debug info
DebugLoc DL;
for (MachineBasicBlock::iterator iter = blk->begin(); iter != blk->end(); ++iter) {
MachineInstr *instr = &(*iter);
if (instr->getDebugLoc().isUnknown() == false) {
DL = instr->getDebugLoc();
}
}
return DL;
}
static MachineInstr *getNormalBlockBranchInstr(MachineBasicBlock *blk) {
MachineBasicBlock::reverse_iterator iter = blk->rbegin();
MachineInstr *instr = &*iter;
if (instr && (isCondBranch(instr) || isUncondBranch(instr))) {
return instr;
}
return NULL;
}
// The correct naming for this is getPossibleLoopendBlockBranchInstr.
//
// BB with backward-edge could have move instructions after the branch
// instruction. Such move instruction "belong to" the loop backward-edge.
//
static MachineInstr *getLoopendBlockBranchInstr(MachineBasicBlock *blk) {
const AMDGPUInstrInfo * TII = static_cast<const AMDGPUInstrInfo *>(
blk->getParent()->getTarget().getInstrInfo());
for (MachineBasicBlock::reverse_iterator iter = blk->rbegin(),
iterEnd = blk->rend(); iter != iterEnd; ++iter) {
// FIXME: Simplify
MachineInstr *instr = &*iter;
if (instr) {
if (isCondBranch(instr) || isUncondBranch(instr)) {
return instr;
} else if (!TII->isMov(instr->getOpcode())) {
break;
}
}
}
return NULL;
}
static MachineInstr *getReturnInstr(MachineBasicBlock *blk) {
MachineBasicBlock::reverse_iterator iter = blk->rbegin();
if (iter != blk->rend()) {
MachineInstr *instr = &(*iter);
if (instr->getOpcode() == AMDGPU::RETURN) {
return instr;
}
}
return NULL;
}
static MachineInstr *getContinueInstr(MachineBasicBlock *blk) {
MachineBasicBlock::reverse_iterator iter = blk->rbegin();
if (iter != blk->rend()) {
MachineInstr *instr = &(*iter);
if (instr->getOpcode() == AMDGPU::CONTINUE) {
return instr;
}
}
return NULL;
}
static MachineInstr *getLoopBreakInstr(MachineBasicBlock *blk) {
for (MachineBasicBlock::iterator iter = blk->begin(); (iter != blk->end()); ++iter) {
MachineInstr *instr = &(*iter);
if (instr->getOpcode() == AMDGPU::PREDICATED_BREAK) {
return instr;
}
}
return NULL;
}
static bool isReturnBlock(MachineBasicBlock *blk) {
MachineInstr *instr = getReturnInstr(blk);
bool isReturn = (blk->succ_size() == 0);
if (instr) {
assert(isReturn);
} else if (isReturn) {
if (DEBUGME) {
errs() << "BB" << blk->getNumber()
<<" is return block without RETURN instr\n";
}
}
return isReturn;
}
static MachineBasicBlock::iterator
getInstrPos(MachineBasicBlock *blk, MachineInstr *instr) {
assert(instr->getParent() == blk && "instruction doesn't belong to block");
MachineBasicBlock::iterator iter = blk->begin();
MachineBasicBlock::iterator iterEnd = blk->end();
while (&(*iter) != instr && iter != iterEnd) {
++iter;
}
assert(iter != iterEnd);
return iter;
}//getInstrPos
static MachineInstr *insertInstrBefore(MachineBasicBlock *blk, int newOpcode,
AMDGPUCFGStructurizer *passRep) {
return insertInstrBefore(blk,newOpcode,passRep,DebugLoc());
} //insertInstrBefore
static MachineInstr *insertInstrBefore(MachineBasicBlock *blk, int newOpcode,
AMDGPUCFGStructurizer *passRep, DebugLoc DL) {
const TargetInstrInfo *tii = passRep->getTargetInstrInfo();
MachineInstr *newInstr =
blk->getParent()->CreateMachineInstr(tii->get(newOpcode), DL);
MachineBasicBlock::iterator res;
if (blk->begin() != blk->end()) {
blk->insert(blk->begin(), newInstr);
} else {
blk->push_back(newInstr);
}
SHOWNEWINSTR(newInstr);
return newInstr;
} //insertInstrBefore
static void insertInstrEnd(MachineBasicBlock *blk, int newOpcode,
AMDGPUCFGStructurizer *passRep) {
insertInstrEnd(blk,newOpcode,passRep,DebugLoc());
} //insertInstrEnd
static void insertInstrEnd(MachineBasicBlock *blk, int newOpcode,
AMDGPUCFGStructurizer *passRep, DebugLoc DL) {
const TargetInstrInfo *tii = passRep->getTargetInstrInfo();
MachineInstr *newInstr = blk->getParent()
->CreateMachineInstr(tii->get(newOpcode), DL);
blk->push_back(newInstr);
//assume the instruction doesn't take any reg operand ...
SHOWNEWINSTR(newInstr);
} //insertInstrEnd
static MachineInstr *insertInstrBefore(MachineBasicBlock::iterator instrPos,
int newOpcode,
AMDGPUCFGStructurizer *passRep) {
MachineInstr *oldInstr = &(*instrPos);
const TargetInstrInfo *tii = passRep->getTargetInstrInfo();
MachineBasicBlock *blk = oldInstr->getParent();
MachineInstr *newInstr =
blk->getParent()->CreateMachineInstr(tii->get(newOpcode),
DebugLoc());
blk->insert(instrPos, newInstr);
//assume the instruction doesn't take any reg operand ...
SHOWNEWINSTR(newInstr);
return newInstr;
} //insertInstrBefore
static void insertCondBranchBefore(MachineBasicBlock::iterator instrPos,
int newOpcode,
AMDGPUCFGStructurizer *passRep,
DebugLoc DL) {
MachineInstr *oldInstr = &(*instrPos);
const TargetInstrInfo *tii = passRep->getTargetInstrInfo();
MachineBasicBlock *blk = oldInstr->getParent();
MachineFunction *MF = blk->getParent();
MachineInstr *newInstr = MF->CreateMachineInstr(tii->get(newOpcode), DL);
blk->insert(instrPos, newInstr);
MachineInstrBuilder MIB(*MF, newInstr);
MIB.addReg(oldInstr->getOperand(1).getReg(), false);
SHOWNEWINSTR(newInstr);
//erase later oldInstr->eraseFromParent();
} //insertCondBranchBefore
static void insertCondBranchBefore(MachineBasicBlock *blk,
MachineBasicBlock::iterator insertPos,
int newOpcode,
AMDGPUCFGStructurizer *passRep,
RegiT regNum,
DebugLoc DL) {
const TargetInstrInfo *tii = passRep->getTargetInstrInfo();
MachineFunction *MF = blk->getParent();
MachineInstr *newInstr = MF->CreateMachineInstr(tii->get(newOpcode), DL);
//insert before
blk->insert(insertPos, newInstr);
MachineInstrBuilder(*MF, newInstr).addReg(regNum, false);
SHOWNEWINSTR(newInstr);
} //insertCondBranchBefore
static void insertCondBranchEnd(MachineBasicBlock *blk,
int newOpcode,
AMDGPUCFGStructurizer *passRep,
RegiT regNum) {
const TargetInstrInfo *tii = passRep->getTargetInstrInfo();
MachineFunction *MF = blk->getParent();
MachineInstr *newInstr =
MF->CreateMachineInstr(tii->get(newOpcode), DebugLoc());
blk->push_back(newInstr);
MachineInstrBuilder(*MF, newInstr).addReg(regNum, false);
SHOWNEWINSTR(newInstr);
} //insertCondBranchEnd
static void insertAssignInstrBefore(MachineBasicBlock::iterator instrPos,
AMDGPUCFGStructurizer *passRep,
RegiT regNum, int regVal) {
MachineInstr *oldInstr = &(*instrPos);
const AMDGPUInstrInfo *tii =
static_cast<const AMDGPUInstrInfo *>(passRep->getTargetInstrInfo());
MachineBasicBlock *blk = oldInstr->getParent();
MachineInstr *newInstr = tii->getMovImmInstr(blk->getParent(), regNum,
regVal);
blk->insert(instrPos, newInstr);
SHOWNEWINSTR(newInstr);
} //insertAssignInstrBefore
static void insertAssignInstrBefore(MachineBasicBlock *blk,
AMDGPUCFGStructurizer *passRep,
RegiT regNum, int regVal) {
const AMDGPUInstrInfo *tii =
static_cast<const AMDGPUInstrInfo *>(passRep->getTargetInstrInfo());
MachineInstr *newInstr = tii->getMovImmInstr(blk->getParent(), regNum,
regVal);
if (blk->begin() != blk->end()) {
blk->insert(blk->begin(), newInstr);
} else {
blk->push_back(newInstr);
}
SHOWNEWINSTR(newInstr);
} //insertInstrBefore
static void insertCompareInstrBefore(MachineBasicBlock *blk,
MachineBasicBlock::iterator instrPos,
AMDGPUCFGStructurizer *passRep,
RegiT dstReg, RegiT src1Reg,
RegiT src2Reg) {
const AMDGPUInstrInfo *tii =
static_cast<const AMDGPUInstrInfo *>(passRep->getTargetInstrInfo());
MachineFunction *MF = blk->getParent();
MachineInstr *newInstr =
MF->CreateMachineInstr(tii->get(tii->getIEQOpcode()), DebugLoc());
MachineInstrBuilder MIB(*MF, newInstr);
MIB.addReg(dstReg, RegState::Define); //set target
MIB.addReg(src1Reg); //set src value
MIB.addReg(src2Reg); //set src value
blk->insert(instrPos, newInstr);
SHOWNEWINSTR(newInstr);
} //insertCompareInstrBefore
static void cloneSuccessorList(MachineBasicBlock *dstBlk,
MachineBasicBlock *srcBlk) {
for (MachineBasicBlock::succ_iterator iter = srcBlk->succ_begin(),
iterEnd = srcBlk->succ_end(); iter != iterEnd; ++iter) {
dstBlk->addSuccessor(*iter); // *iter's predecessor is also taken care of
}
} //cloneSuccessorList
static MachineBasicBlock *clone(MachineBasicBlock *srcBlk) {
MachineFunction *func = srcBlk->getParent();
MachineBasicBlock *newBlk = func->CreateMachineBasicBlock();
func->push_back(newBlk); //insert to function
for (MachineBasicBlock::iterator iter = srcBlk->begin(),
iterEnd = srcBlk->end();
iter != iterEnd; ++iter) {
MachineInstr *instr = func->CloneMachineInstr(iter);
newBlk->push_back(instr);
}
return newBlk;
}
//MachineBasicBlock::ReplaceUsesOfBlockWith doesn't serve the purpose because
//the AMDGPU instruction is not recognized as terminator fix this and retire
//this routine
static void replaceInstrUseOfBlockWith(MachineBasicBlock *srcBlk,
MachineBasicBlock *oldBlk,
MachineBasicBlock *newBlk) {
MachineInstr *branchInstr = getLoopendBlockBranchInstr(srcBlk);
if (branchInstr && isCondBranch(branchInstr) &&
getTrueBranch(branchInstr) == oldBlk) {
setTrueBranch(branchInstr, newBlk);
}
}
static void wrapup(MachineBasicBlock *entryBlk) {
assert((!entryBlk->getParent()->getJumpTableInfo()
|| entryBlk->getParent()->getJumpTableInfo()->isEmpty())
&& "found a jump table");
//collect continue right before endloop
SmallVector<MachineInstr *, DEFAULT_VEC_SLOTS> contInstr;
MachineBasicBlock::iterator pre = entryBlk->begin();
MachineBasicBlock::iterator iterEnd = entryBlk->end();
MachineBasicBlock::iterator iter = pre;
while (iter != iterEnd) {
if (pre->getOpcode() == AMDGPU::CONTINUE
&& iter->getOpcode() == AMDGPU::ENDLOOP) {
contInstr.push_back(pre);
}
pre = iter;
++iter;
} //end while
//delete continue right before endloop
for (unsigned i = 0; i < contInstr.size(); ++i) {
contInstr[i]->eraseFromParent();
}
// TODO to fix up jump table so later phase won't be confused. if
// (jumpTableInfo->isEmpty() == false) { need to clean the jump table, but
// there isn't such an interface yet. alternatively, replace all the other
// blocks in the jump table with the entryBlk //}
} //wrapup
static MachineDominatorTree *getDominatorTree(AMDGPUCFGStructurizer &pass) {
return &pass.getAnalysis<MachineDominatorTree>();
}
static MachinePostDominatorTree*
getPostDominatorTree(AMDGPUCFGStructurizer &pass) {
return &pass.getAnalysis<MachinePostDominatorTree>();
}
static MachineLoopInfo *getLoopInfo(AMDGPUCFGStructurizer &pass) {
return &pass.getAnalysis<MachineLoopInfo>();
}
}; // template class CFGStructTraits
} //end of namespace llvm
// createAMDGPUCFGPreparationPass- Returns a pass
FunctionPass *llvm::createAMDGPUCFGPreparationPass(TargetMachine &tm
) {
return new AMDGPUCFGPrepare(tm );
}
bool AMDGPUCFGPrepare::runOnMachineFunction(MachineFunction &func) {
return llvmCFGStruct::CFGStructurizer<AMDGPUCFGStructurizer>().prepare(func,
*this,
TRI);
}
// createAMDGPUCFGStructurizerPass- Returns a pass
FunctionPass *llvm::createAMDGPUCFGStructurizerPass(TargetMachine &tm
) {
return new AMDGPUCFGPerform(tm );
}
bool AMDGPUCFGPerform::runOnMachineFunction(MachineFunction &func) {
return llvmCFGStruct::CFGStructurizer<AMDGPUCFGStructurizer>().run(func,
*this,
TRI);
}