llvm-6502/include/llvm/Analysis/ScalarEvolutionExpander.h

184 lines
7.2 KiB
C
Raw Normal View History

//===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the classes used to generate code from scalar expressions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_EXPANDER_H
#define LLVM_ANALYSIS_SCALAREVOLUTION_EXPANDER_H
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Support/TargetFolder.h"
#include <set>
namespace llvm {
/// SCEVExpander - This class uses information about analyze scalars to
/// rewrite expressions in canonical form.
///
/// Clients should create an instance of this class when rewriting is needed,
/// and destroy it when finished to allow the release of the associated
/// memory.
class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
ScalarEvolution &SE;
std::map<std::pair<const SCEV *, Instruction *>, AssertingVH<Value> >
InsertedExpressions;
std::set<Value*> InsertedValues;
/// PostIncLoop - When non-null, expanded addrecs referring to the given
/// loop expanded in post-inc mode. For example, expanding {1,+,1}<L> in
/// post-inc mode returns the add instruction that adds one to the phi
/// for {0,+,1}<L>, as opposed to a new phi starting at 1. This is only
/// supported in non-canonical mode.
const Loop *PostIncLoop;
/// IVIncInsertPos - When this is non-null, addrecs expanded in the
/// loop it indicates should be inserted with increments at
/// IVIncInsertPos.
const Loop *IVIncInsertLoop;
/// IVIncInsertPos - When expanding addrecs in the IVIncInsertLoop loop,
/// insert the IV increment at this position.
Instruction *IVIncInsertPos;
/// CanonicalMode - When true, expressions are expanded in "canonical"
/// form. In particular, addrecs are expanded as arithmetic based on
/// a canonical induction variable. When false, expression are expanded
/// in a more literal form.
bool CanonicalMode;
typedef IRBuilder<true, TargetFolder> BuilderType;
BuilderType Builder;
friend struct SCEVVisitor<SCEVExpander, Value*>;
public:
/// SCEVExpander - Construct a SCEVExpander in "canonical" mode.
explicit SCEVExpander(ScalarEvolution &se)
: SE(se), PostIncLoop(0), IVIncInsertLoop(0), CanonicalMode(true),
Builder(se.getContext(), TargetFolder(se.TD)) {}
/// clear - Erase the contents of the InsertedExpressions map so that users
/// trying to expand the same expression into multiple BasicBlocks or
/// different places within the same BasicBlock can do so.
void clear() { InsertedExpressions.clear(); }
/// getOrInsertCanonicalInductionVariable - This method returns the
/// canonical induction variable of the specified type for the specified
/// loop (inserting one if there is none). A canonical induction variable
/// starts at zero and steps by one on each iteration.
Value *getOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty);
/// expandCodeFor - Insert code to directly compute the specified SCEV
/// expression into the program. The inserted code is inserted into the
/// specified block.
Value *expandCodeFor(const SCEV *SH, const Type *Ty, Instruction *I) {
BasicBlock::iterator IP = I;
while (isInsertedInstruction(IP)) ++IP;
Builder.SetInsertPoint(IP->getParent(), IP);
return expandCodeFor(SH, Ty);
}
/// setIVIncInsertPos - Set the current IV increment loop and position.
void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
assert(!CanonicalMode &&
"IV increment positions are not supported in CanonicalMode");
IVIncInsertLoop = L;
IVIncInsertPos = Pos;
}
/// setPostInc - If L is non-null, enable post-inc expansion for addrecs
/// referring to the given loop. If L is null, disable post-inc expansion
/// completely. Post-inc expansion is only supported in non-canonical
/// mode.
void setPostInc(const Loop *L) {
assert(!CanonicalMode &&
"Post-inc expansion is not supported in CanonicalMode");
PostIncLoop = L;
}
/// disableCanonicalMode - Disable the behavior of expanding expressions in
/// canonical form rather than in a more literal form. Non-canonical mode
/// is useful for late optimization passes.
void disableCanonicalMode() { CanonicalMode = false; }
private:
LLVMContext &getContext() const { return SE.getContext(); }
/// InsertBinop - Insert the specified binary operator, doing a small amount
/// of work to avoid inserting an obviously redundant operation.
Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS);
/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
/// which must be possible with a noop cast, doing what we can to
/// share the casts.
Value *InsertNoopCastOfTo(Value *V, const Type *Ty);
/// expandAddToGEP - Expand a SCEVAddExpr with a pointer type into a GEP
/// instead of using ptrtoint+arithmetic+inttoptr.
Value *expandAddToGEP(const SCEV *const *op_begin,
const SCEV *const *op_end,
const PointerType *PTy, const Type *Ty, Value *V);
Value *expand(const SCEV *S);
/// expandCodeFor - Insert code to directly compute the specified SCEV
/// expression into the program. The inserted code is inserted into the
/// SCEVExpander's current insertion point. If a type is specified, the
/// result will be expanded to have that type, with a cast if necessary.
Value *expandCodeFor(const SCEV *SH, const Type *Ty = 0);
/// isInsertedInstruction - Return true if the specified instruction was
/// inserted by the code rewriter. If so, the client should not modify the
/// instruction.
bool isInsertedInstruction(Instruction *I) const {
return InsertedValues.count(I);
}
Value *visitConstant(const SCEVConstant *S) {
return S->getValue();
}
Value *visitTruncateExpr(const SCEVTruncateExpr *S);
Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
Value *visitAddExpr(const SCEVAddExpr *S);
Value *visitMulExpr(const SCEVMulExpr *S);
Value *visitUDivExpr(const SCEVUDivExpr *S);
Value *visitAddRecExpr(const SCEVAddRecExpr *S);
Value *visitSMaxExpr(const SCEVSMaxExpr *S);
Value *visitUMaxExpr(const SCEVUMaxExpr *S);
Value *visitUnknown(const SCEVUnknown *S) {
return S->getValue();
}
void rememberInstruction(Value *I);
void restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I);
Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
const Loop *L,
const Type *ExpandTy,
const Type *IntTy);
};
}
#endif