llvm-6502/lib/Support/YAMLTraits.cpp

884 lines
22 KiB
C++
Raw Normal View History

//===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define BUILDING_YAMLIO
#include "llvm/Support/YAMLTraits.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/YAMLParser.h"
#include "llvm/Support/raw_ostream.h"
#include <cstring>
namespace llvm {
namespace yaml {
//===----------------------------------------------------------------------===//
// IO
//===----------------------------------------------------------------------===//
IO::IO(void *Context) : Ctxt(Context) {
}
IO::~IO() {
}
void *IO::getContext() {
return Ctxt;
}
void IO::setContext(void *Context) {
Ctxt = Context;
}
//===----------------------------------------------------------------------===//
// Input
//===----------------------------------------------------------------------===//
Input::Input(StringRef InputContent, void *Ctxt)
: IO(Ctxt), CurrentNode(NULL) {
Strm = new Stream(InputContent, SrcMgr);
DocIterator = Strm->begin();
}
llvm::error_code Input::error() {
return EC;
}
void Input::setDiagHandler(llvm::SourceMgr::DiagHandlerTy Handler, void *Ctxt) {
SrcMgr.setDiagHandler(Handler, Ctxt);
}
bool Input::outputting() {
return false;
}
bool Input::setCurrentDocument() {
if ( DocIterator != Strm->end() ) {
Node *N = DocIterator->getRoot();
if (llvm::isa<NullNode>(N)) {
// Empty files are allowed and ignored
++DocIterator;
return setCurrentDocument();
}
CurrentNode = this->createHNodes(N);
return true;
}
return false;
}
void Input::nextDocument() {
++DocIterator;
}
void Input::beginMapping() {
if ( EC )
return;
MapHNode *MN = llvm::dyn_cast<MapHNode>(CurrentNode);
if ( MN ) {
MN->ValidKeys.clear();
}
}
bool Input::preflightKey(const char *Key, bool Required, bool,
bool &UseDefault, void *&SaveInfo) {
UseDefault = false;
if ( EC )
return false;
MapHNode *MN = llvm::dyn_cast<MapHNode>(CurrentNode);
if ( !MN ) {
setError(CurrentNode, "not a mapping");
return false;
}
MN->ValidKeys.push_back(Key);
HNode *Value = MN->Mapping[Key];
if ( !Value ) {
if ( Required )
setError(CurrentNode, Twine("missing required key '") + Key + "'");
else
UseDefault = true;
return false;
}
SaveInfo = CurrentNode;
CurrentNode = Value;
return true;
}
void Input::postflightKey(void *saveInfo) {
CurrentNode = reinterpret_cast<HNode*>(saveInfo);
}
void Input::endMapping() {
if ( EC )
return;
MapHNode *MN = llvm::dyn_cast<MapHNode>(CurrentNode);
if ( !MN )
return;
for (MapHNode::NameToNode::iterator i=MN->Mapping.begin(),
End=MN->Mapping.end(); i != End; ++i) {
if ( ! MN->isValidKey(i->first) ) {
setError(i->second, Twine("unknown key '") + i->first + "'" );
break;
}
}
}
unsigned Input::beginSequence() {
if ( SequenceHNode *SQ = llvm::dyn_cast<SequenceHNode>(CurrentNode) ) {
return SQ->Entries.size();
}
return 0;
}
void Input::endSequence() {
}
bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
if ( EC )
return false;
if ( SequenceHNode *SQ = llvm::dyn_cast<SequenceHNode>(CurrentNode) ) {
SaveInfo = CurrentNode;
CurrentNode = SQ->Entries[Index];
return true;
}
return false;
}
void Input::postflightElement(void *SaveInfo) {
CurrentNode = reinterpret_cast<HNode*>(SaveInfo);
}
unsigned Input::beginFlowSequence() {
if ( SequenceHNode *SQ = llvm::dyn_cast<SequenceHNode>(CurrentNode) ) {
return SQ->Entries.size();
}
return 0;
}
bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
if ( EC )
return false;
if ( SequenceHNode *SQ = llvm::dyn_cast<SequenceHNode>(CurrentNode) ) {
SaveInfo = CurrentNode;
CurrentNode = SQ->Entries[index];
return true;
}
return false;
}
void Input::postflightFlowElement(void *SaveInfo) {
CurrentNode = reinterpret_cast<HNode*>(SaveInfo);
}
void Input::endFlowSequence() {
}
void Input::beginEnumScalar() {
ScalarMatchFound = false;
}
bool Input::matchEnumScalar(const char *Str, bool) {
if ( ScalarMatchFound )
return false;
if ( ScalarHNode *SN = llvm::dyn_cast<ScalarHNode>(CurrentNode) ) {
if ( SN->value().equals(Str) ) {
ScalarMatchFound = true;
return true;
}
}
return false;
}
void Input::endEnumScalar() {
if ( !ScalarMatchFound ) {
setError(CurrentNode, "unknown enumerated scalar");
}
}
bool Input::beginBitSetScalar(bool &DoClear) {
BitValuesUsed.clear();
if ( SequenceHNode *SQ = llvm::dyn_cast<SequenceHNode>(CurrentNode) ) {
BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
}
else {
setError(CurrentNode, "expected sequence of bit values");
}
DoClear = true;
return true;
}
bool Input::bitSetMatch(const char *Str, bool) {
if ( EC )
return false;
if ( SequenceHNode *SQ = llvm::dyn_cast<SequenceHNode>(CurrentNode) ) {
unsigned Index = 0;
for (std::vector<HNode*>::iterator i=SQ->Entries.begin(),
End=SQ->Entries.end(); i != End; ++i) {
if ( ScalarHNode *SN = llvm::dyn_cast<ScalarHNode>(*i) ) {
if ( SN->value().equals(Str) ) {
BitValuesUsed[Index] = true;
return true;
}
}
else {
setError(CurrentNode, "unexpected scalar in sequence of bit values");
}
++Index;
}
}
else {
setError(CurrentNode, "expected sequence of bit values");
}
return false;
}
void Input::endBitSetScalar() {
if ( EC )
return;
if ( SequenceHNode *SQ = llvm::dyn_cast<SequenceHNode>(CurrentNode) ) {
assert(BitValuesUsed.size() == SQ->Entries.size());
for ( unsigned i=0; i < SQ->Entries.size(); ++i ) {
if ( !BitValuesUsed[i] ) {
setError(SQ->Entries[i], "unknown bit value");
return;
}
}
}
}
void Input::scalarString(StringRef &S) {
if ( ScalarHNode *SN = llvm::dyn_cast<ScalarHNode>(CurrentNode) ) {
S = SN->value();
}
else {
setError(CurrentNode, "unexpected scalar");
}
}
void Input::setError(HNode *hnode, const Twine &message) {
this->setError(hnode->_node, message);
}
void Input::setError(Node *node, const Twine &message) {
Strm->printError(node, message);
EC = make_error_code(errc::invalid_argument);
}
Input::HNode *Input::createHNodes(Node *N) {
llvm::SmallString<128> StringStorage;
if ( ScalarNode *SN = llvm::dyn_cast<ScalarNode>(N) ) {
StringRef KeyStr = SN->getValue(StringStorage);
if ( !StringStorage.empty() ) {
// Copy string to permanent storage
unsigned Len = StringStorage.size();
char* Buf = Allocator.Allocate<char>(Len);
memcpy(Buf, &StringStorage[0], Len);
KeyStr = StringRef(Buf, Len);
}
return new (Allocator) ScalarHNode(N, KeyStr);
}
else if ( SequenceNode *SQ = llvm::dyn_cast<SequenceNode>(N) ) {
SequenceHNode *SQHNode = new (Allocator) SequenceHNode(N);
for (SequenceNode::iterator i=SQ->begin(),End=SQ->end(); i != End; ++i ) {
HNode *Entry = this->createHNodes(i);
if ( EC )
break;
SQHNode->Entries.push_back(Entry);
}
return SQHNode;
}
else if ( MappingNode *Map = llvm::dyn_cast<MappingNode>(N) ) {
MapHNode *mapHNode = new (Allocator) MapHNode(N);
for (MappingNode::iterator i=Map->begin(), End=Map->end(); i != End; ++i ) {
ScalarNode *KeyScalar = llvm::dyn_cast<ScalarNode>(i->getKey());
StringStorage.clear();
llvm::StringRef KeyStr = KeyScalar->getValue(StringStorage);
if ( !StringStorage.empty() ) {
// Copy string to permanent storage
unsigned Len = StringStorage.size();
char* Buf = Allocator.Allocate<char>(Len);
memcpy(Buf, &StringStorage[0], Len);
KeyStr = StringRef(Buf, Len);
}
HNode *ValueHNode = this->createHNodes(i->getValue());
if ( EC )
break;
mapHNode->Mapping[KeyStr] = ValueHNode;
}
return mapHNode;
}
else if ( llvm::isa<NullNode>(N) ) {
return new (Allocator) EmptyHNode(N);
}
else {
setError(N, "unknown node kind");
return NULL;
}
}
bool Input::MapHNode::isValidKey(StringRef Key) {
for (SmallVector<const char*, 6>::iterator i=ValidKeys.begin(),
End=ValidKeys.end(); i != End; ++i) {
if ( Key.equals(*i) )
return true;
}
return false;
}
void Input::setError(const Twine &Message) {
this->setError(CurrentNode, Message);
}
//===----------------------------------------------------------------------===//
// Output
//===----------------------------------------------------------------------===//
Output::Output(llvm::raw_ostream &yout, void *context)
: IO(context), Out(yout), Column(0), ColumnAtFlowStart(0),
NeedBitValueComma(false), NeedFlowSequenceComma(false),
EnumerationMatchFound(false), NeedsNewLine(false) {
}
Output::~Output() {
}
bool Output::outputting() {
return true;
}
void Output::beginMapping() {
StateStack.push_back(inMapFirstKey);
NeedsNewLine = true;
}
void Output::endMapping() {
StateStack.pop_back();
}
bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
bool &UseDefault, void *&) {
UseDefault = false;
if ( Required || !SameAsDefault ) {
this->newLineCheck();
this->paddedKey(Key);
return true;
}
return false;
}
void Output::postflightKey(void*) {
if ( StateStack.back() == inMapFirstKey ) {
StateStack.pop_back();
StateStack.push_back(inMapOtherKey);
}
}
void Output::beginDocuments() {
this->outputUpToEndOfLine("---");
}
bool Output::preflightDocument(unsigned index) {
if ( index > 0 )
this->outputUpToEndOfLine("\n---");
return true;
}
void Output::postflightDocument() {
}
void Output::endDocuments() {
output("\n...\n");
}
unsigned Output::beginSequence() {
StateStack.push_back(inSeq);
NeedsNewLine = true;
return 0;
}
void Output::endSequence() {
StateStack.pop_back();
}
bool Output::preflightElement(unsigned , void *&) {
return true;
}
void Output::postflightElement(void*) {
}
unsigned Output::beginFlowSequence() {
this->newLineCheck();
StateStack.push_back(inFlowSeq);
ColumnAtFlowStart = Column;
output("[ ");
NeedFlowSequenceComma = false;
return 0;
}
void Output::endFlowSequence() {
StateStack.pop_back();
this->outputUpToEndOfLine(" ]");
}
bool Output::preflightFlowElement(unsigned , void *&) {
if ( NeedFlowSequenceComma )
output(", ");
if ( Column > 70 ) {
output("\n");
for(int i=0; i < ColumnAtFlowStart; ++i)
output(" ");
Column = ColumnAtFlowStart;
output(" ");
}
return true;
}
void Output::postflightFlowElement(void*) {
NeedFlowSequenceComma = true;
}
void Output::beginEnumScalar() {
EnumerationMatchFound = false;
}
bool Output::matchEnumScalar(const char *Str, bool Match) {
if ( Match && !EnumerationMatchFound ) {
this->newLineCheck();
this->outputUpToEndOfLine(Str);
EnumerationMatchFound = true;
}
return false;
}
void Output::endEnumScalar() {
if ( !EnumerationMatchFound )
llvm_unreachable("bad runtime enum value");
}
bool Output::beginBitSetScalar(bool &DoClear) {
this->newLineCheck();
output("[ ");
NeedBitValueComma = false;
DoClear = false;
return true;
}
bool Output::bitSetMatch(const char *Str, bool Matches) {
if ( Matches ) {
if ( NeedBitValueComma )
output(", ");
this->output(Str);
NeedBitValueComma = true;
}
return false;
}
void Output::endBitSetScalar() {
this->outputUpToEndOfLine(" ]");
}
void Output::scalarString(StringRef &S) {
this->newLineCheck();
if (S.find('\n') == StringRef::npos) {
// No embedded new-line chars, just print string.
this->outputUpToEndOfLine(S);
return;
}
unsigned i = 0;
unsigned j = 0;
unsigned End = S.size();
output("'"); // Starting single quote.
const char *Base = S.data();
while (j < End) {
// Escape a single quote by doubling it.
if (S[j] == '\'') {
output(StringRef(&Base[i], j - i + 1));
output("'");
i = j + 1;
}
++j;
}
output(StringRef(&Base[i], j - i));
this->outputUpToEndOfLine("'"); // Ending single quote.
}
void Output::setError(const Twine &message) {
}
void Output::output(StringRef s) {
Column += s.size();
Out << s;
}
void Output::outputUpToEndOfLine(StringRef s) {
this->output(s);
if ( StateStack.back() != inFlowSeq )
NeedsNewLine = true;
}
void Output::outputNewLine() {
Out << "\n";
Column = 0;
}
// if seq at top, indent as if map, then add "- "
// if seq in middle, use "- " if firstKey, else use " "
//
void Output::newLineCheck() {
if ( ! NeedsNewLine )
return;
NeedsNewLine = false;
this->outputNewLine();
assert(StateStack.size() > 0);
unsigned Indent = StateStack.size() - 1;
bool OutputDash = false;
if ( StateStack.back() == inSeq ) {
OutputDash = true;
}
else if ( (StateStack.size() > 1)
&& (StateStack.back() == inMapFirstKey)
&& (StateStack[StateStack.size()-2] == inSeq) ) {
--Indent;
OutputDash = true;
}
for (unsigned i=0; i < Indent; ++i) {
output(" ");
}
if ( OutputDash ) {
output("- ");
}
}
void Output::paddedKey(StringRef key) {
output(key);
output(":");
const char *spaces = " ";
if ( key.size() < strlen(spaces) )
output(&spaces[key.size()]);
else
output(" ");
}
//===----------------------------------------------------------------------===//
// traits for built-in types
//===----------------------------------------------------------------------===//
template<>
struct ScalarTraits<bool> {
static void output(const bool &Val, void*, llvm::raw_ostream &Out) {
Out << ( Val ? "true" : "false");
}
static llvm::StringRef input(llvm::StringRef Scalar, void*, bool &Val) {
if ( Scalar.equals("true") ) {
Val = true;
return StringRef();
}
else if ( Scalar.equals("false") ) {
Val = false;
return StringRef();
}
return "invalid boolean";
}
};
template<>
struct ScalarTraits<StringRef> {
static void output(const StringRef &Val, void*, llvm::raw_ostream &Out) {
Out << Val;
}
static llvm::StringRef input(llvm::StringRef Scalar, void*, StringRef &Val){
Val = Scalar;
return StringRef();
}
};
template<>
struct ScalarTraits<uint8_t> {
static void output(const uint8_t &Val, void*, llvm::raw_ostream &Out) {
// use temp uin32_t because ostream thinks uint8_t is a character
uint32_t Num = Val;
Out << Num;
}
static llvm::StringRef input(llvm::StringRef Scalar, void*, uint8_t &Val) {
unsigned long long n;
if ( getAsUnsignedInteger(Scalar, 0, n) )
return "invalid number";
if ( n > 0xFF )
return "out of range number";
Val = n;
return StringRef();
}
};
template<>
struct ScalarTraits<uint16_t> {
static void output(const uint16_t &Val, void*, llvm::raw_ostream &Out) {
Out << Val;
}
static llvm::StringRef input(llvm::StringRef Scalar, void*, uint16_t &Val) {
unsigned long long n;
if ( getAsUnsignedInteger(Scalar, 0, n) )
return "invalid number";
if ( n > 0xFFFF )
return "out of range number";
Val = n;
return StringRef();
}
};
template<>
struct ScalarTraits<uint32_t> {
static void output(const uint32_t &Val, void*, llvm::raw_ostream &Out) {
Out << Val;
}
static llvm::StringRef input(llvm::StringRef Scalar, void*, uint32_t &Val) {
unsigned long long n;
if ( getAsUnsignedInteger(Scalar, 0, n) )
return "invalid number";
if ( n > 0xFFFFFFFFUL )
return "out of range number";
Val = n;
return StringRef();
}
};
template<>
struct ScalarTraits<uint64_t> {
static void output(const uint64_t &Val, void*, llvm::raw_ostream &Out) {
Out << Val;
}
static llvm::StringRef input(llvm::StringRef Scalar, void*, uint64_t &Val) {
unsigned long long N;
if ( getAsUnsignedInteger(Scalar, 0, N) )
return "invalid number";
Val = N;
return StringRef();
}
};
template<>
struct ScalarTraits<int8_t> {
static void output(const int8_t &Val, void*, llvm::raw_ostream &Out) {
// use temp in32_t because ostream thinks int8_t is a character
int32_t Num = Val;
Out << Num;
}
static llvm::StringRef input(llvm::StringRef Scalar, void*, int8_t &Val) {
long long N;
if ( getAsSignedInteger(Scalar, 0, N) )
return "invalid number";
if ( (N > 127) || (N < -128) )
return "out of range number";
Val = N;
return StringRef();
}
};
template<>
struct ScalarTraits<int16_t> {
static void output(const int16_t &Val, void*, llvm::raw_ostream &Out) {
Out << Val;
}
static llvm::StringRef input(llvm::StringRef Scalar, void*, int16_t &Val) {
long long N;
if ( getAsSignedInteger(Scalar, 0, N) )
return "invalid number";
if ( (N > INT16_MAX) || (N < INT16_MIN) )
return "out of range number";
Val = N;
return StringRef();
}
};
template<>
struct ScalarTraits<int32_t> {
static void output(const int32_t &Val, void*, llvm::raw_ostream &Out) {
Out << Val;
}
static llvm::StringRef input(llvm::StringRef Scalar, void*, int32_t &Val) {
long long N;
if ( getAsSignedInteger(Scalar, 0, N) )
return "invalid number";
if ( (N > INT32_MAX) || (N < INT32_MIN) )
return "out of range number";
Val = N;
return StringRef();
}
};
template<>
struct ScalarTraits<int64_t> {
static void output(const int64_t &Val, void*, llvm::raw_ostream &Out) {
Out << Val;
}
static llvm::StringRef input(llvm::StringRef Scalar, void*, int64_t &Val) {
long long N;
if ( getAsSignedInteger(Scalar, 0, N) )
return "invalid number";
Val = N;
return StringRef();
}
};
template<>
struct ScalarTraits<double> {
static void output(const double &Val, void*, llvm::raw_ostream &Out) {
Out << format("%g", Val);
}
static llvm::StringRef input(llvm::StringRef Scalar, void*, double &Val) {
SmallString<32> buff(Scalar.begin(), Scalar.end());
char *end;
Val = strtod(buff.c_str(), &end);
if ( *end != '\0' )
return "invalid floating point number";
return StringRef();
}
};
template<>
struct ScalarTraits<float> {
static void output(const float &Val, void*, llvm::raw_ostream &Out) {
Out << format("%g", Val);
}
static llvm::StringRef input(llvm::StringRef Scalar, void*, float &Val) {
SmallString<32> buff(Scalar.begin(), Scalar.end());
char *end;
Val = strtod(buff.c_str(), &end);
if ( *end != '\0' )
return "invalid floating point number";
return StringRef();
}
};
template<>
struct ScalarTraits<Hex8> {
static void output(const Hex8 &Val, void*, llvm::raw_ostream &Out) {
uint8_t Num = Val;
Out << format("0x%02X", Num);
}
static llvm::StringRef input(llvm::StringRef Scalar, void*, Hex8 &Val) {
unsigned long long n;
if ( getAsUnsignedInteger(Scalar, 0, n) )
return "invalid hex8 number";
if ( n > 0xFF )
return "out of range hex8 number";
Val = n;
return StringRef();
}
};
template<>
struct ScalarTraits<Hex16> {
static void output(const Hex16 &Val, void*, llvm::raw_ostream &Out) {
uint16_t Num = Val;
Out << format("0x%04X", Num);
}
static llvm::StringRef input(llvm::StringRef Scalar, void*, Hex16 &Val) {
unsigned long long n;
if ( getAsUnsignedInteger(Scalar, 0, n) )
return "invalid hex16 number";
if ( n > 0xFFFF )
return "out of range hex16 number";
Val = n;
return StringRef();
}
};
template<>
struct ScalarTraits<Hex32> {
static void output(const Hex32 &Val, void*, llvm::raw_ostream &Out) {
uint32_t Num = Val;
Out << format("0x%08X", Num);
}
static llvm::StringRef input(llvm::StringRef Scalar, void*, Hex32 &Val) {
unsigned long long n;
if ( getAsUnsignedInteger(Scalar, 0, n) )
return "invalid hex32 number";
if ( n > 0xFFFFFFFFUL )
return "out of range hex32 number";
Val = n;
return StringRef();
}
};
template<>
struct ScalarTraits<Hex64> {
static void output(const Hex64 &Val, void*, llvm::raw_ostream &Out) {
uint64_t Num = Val;
Out << format("0x%016llX", Num);
}
static llvm::StringRef input(llvm::StringRef Scalar, void*, Hex64 &Val) {
unsigned long long Num;
if ( getAsUnsignedInteger(Scalar, 0, Num) )
return "invalid hex64 number";
Val = Num;
return StringRef();
}
};
// We want all the ScalarTrait specialized on built-in types
// to be instantiated here.
template <typename T>
struct ForceUse {
ForceUse() : oproc(ScalarTraits<T>::output), iproc(ScalarTraits<T>::input) {}
void (*oproc)(const T &, void*, llvm::raw_ostream &);
llvm::StringRef (*iproc)(llvm::StringRef, void*, T &);
};
static ForceUse<bool> Dummy1;
static ForceUse<llvm::StringRef> Dummy2;
static ForceUse<uint8_t> Dummy3;
static ForceUse<uint16_t> Dummy4;
static ForceUse<uint32_t> Dummy5;
static ForceUse<uint64_t> Dummy6;
static ForceUse<int8_t> Dummy7;
static ForceUse<int16_t> Dummy8;
static ForceUse<int32_t> Dummy9;
static ForceUse<int64_t> Dummy10;
static ForceUse<float> Dummy11;
static ForceUse<double> Dummy12;
static ForceUse<Hex8> Dummy13;
static ForceUse<Hex16> Dummy14;
static ForceUse<Hex32> Dummy15;
static ForceUse<Hex64> Dummy16;
} // namespace yaml
} // namespace llvm