llvm-6502/include/llvm/CodeGen/PBQP/RegAllocSolver.h

360 lines
12 KiB
C
Raw Normal View History

//===-- RegAllocSolver.h - Heuristic PBQP Solver for reg alloc --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Heuristic PBQP solver for register allocation problems. This solver uses a
// graph reduction approach. Nodes of degree 0, 1 and 2 are eliminated with
// optimality-preserving rules (see ReductionRules.h). When no low-degree (<3)
// nodes are present, a heuristic derived from Brigg's graph coloring approach
// is used.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H
#define LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H
#include "CostAllocator.h"
#include "Graph.h"
#include "ReductionRules.h"
#include "Solution.h"
#include "llvm/Support/ErrorHandling.h"
#include <limits>
#include <vector>
namespace PBQP {
namespace RegAlloc {
/// \brief Metadata to speed allocatability test.
///
/// Keeps track of the number of infinities in each row and column.
class MatrixMetadata {
private:
MatrixMetadata(const MatrixMetadata&);
void operator=(const MatrixMetadata&);
public:
MatrixMetadata(const PBQP::Matrix& m)
: worstRow(0), worstCol(0),
unsafeRows(new bool[m.getRows() - 1]()),
unsafeCols(new bool[m.getCols() - 1]()) {
unsigned* colCounts = new unsigned[m.getCols() - 1]();
for (unsigned i = 1; i < m.getRows(); ++i) {
unsigned rowCount = 0;
for (unsigned j = 1; j < m.getCols(); ++j) {
if (m[i][j] == std::numeric_limits<PBQP::PBQPNum>::infinity()) {
++rowCount;
++colCounts[j - 1];
unsafeRows[i - 1] = true;
unsafeCols[j - 1] = true;
}
}
worstRow = std::max(worstRow, rowCount);
}
unsigned worstColCountForCurRow =
*std::max_element(colCounts, colCounts + m.getCols() - 1);
worstCol = std::max(worstCol, worstColCountForCurRow);
delete[] colCounts;
}
~MatrixMetadata() {
delete[] unsafeRows;
delete[] unsafeCols;
}
unsigned getWorstRow() const { return worstRow; }
unsigned getWorstCol() const { return worstCol; }
const bool* getUnsafeRows() const { return unsafeRows; }
const bool* getUnsafeCols() const { return unsafeCols; }
private:
unsigned worstRow, worstCol;
bool* unsafeRows;
bool* unsafeCols;
};
class NodeMetadata {
public:
typedef enum { Unprocessed,
OptimallyReducible,
ConservativelyAllocatable,
NotProvablyAllocatable } ReductionState;
NodeMetadata() : rs(Unprocessed), deniedOpts(0), optUnsafeEdges(0) {}
~NodeMetadata() { delete[] optUnsafeEdges; }
void setup(const Vector& costs) {
numOpts = costs.getLength() - 1;
optUnsafeEdges = new unsigned[numOpts]();
}
ReductionState getReductionState() const { return rs; }
void setReductionState(ReductionState rs) { this->rs = rs; }
void handleAddEdge(const MatrixMetadata& md, bool transpose) {
deniedOpts += transpose ? md.getWorstCol() : md.getWorstRow();
const bool* unsafeOpts =
transpose ? md.getUnsafeCols() : md.getUnsafeRows();
for (unsigned i = 0; i < numOpts; ++i)
optUnsafeEdges[i] += unsafeOpts[i];
}
void handleRemoveEdge(const MatrixMetadata& md, bool transpose) {
deniedOpts -= transpose ? md.getWorstCol() : md.getWorstRow();
const bool* unsafeOpts =
transpose ? md.getUnsafeCols() : md.getUnsafeRows();
for (unsigned i = 0; i < numOpts; ++i)
optUnsafeEdges[i] -= unsafeOpts[i];
}
bool isConservativelyAllocatable() const {
return (deniedOpts < numOpts) ||
(std::find(optUnsafeEdges, optUnsafeEdges + numOpts, 0) !=
optUnsafeEdges + numOpts);
}
private:
ReductionState rs;
unsigned numOpts;
unsigned deniedOpts;
unsigned* optUnsafeEdges;
};
class RegAllocSolverImpl {
private:
typedef PBQP::MDMatrix<MatrixMetadata> RAMatrix;
public:
typedef PBQP::Vector RawVector;
typedef PBQP::Matrix RawMatrix;
typedef PBQP::Vector Vector;
typedef RAMatrix Matrix;
typedef PBQP::PoolCostAllocator<
Vector, PBQP::VectorComparator,
Matrix, PBQP::MatrixComparator> CostAllocator;
typedef PBQP::GraphBase::NodeId NodeId;
typedef PBQP::GraphBase::EdgeId EdgeId;
typedef RegAlloc::NodeMetadata NodeMetadata;
struct EdgeMetadata { };
typedef PBQP::Graph<RegAllocSolverImpl> Graph;
RegAllocSolverImpl(Graph &G) : G(G) {}
Solution solve() {
G.setSolver(*this);
Solution S;
setup();
S = backpropagate(G, reduce());
G.unsetSolver();
return S;
}
void handleAddNode(NodeId NId) {
G.getNodeMetadata(NId).setup(G.getNodeCosts(NId));
}
void handleRemoveNode(NodeId NId) {}
void handleSetNodeCosts(NodeId NId, const Vector& newCosts) {}
void handleAddEdge(EdgeId EId) {
handleReconnectEdge(EId, G.getEdgeNode1Id(EId));
handleReconnectEdge(EId, G.getEdgeNode2Id(EId));
}
void handleRemoveEdge(EdgeId EId) {
handleDisconnectEdge(EId, G.getEdgeNode1Id(EId));
handleDisconnectEdge(EId, G.getEdgeNode2Id(EId));
}
void handleDisconnectEdge(EdgeId EId, NodeId NId) {
NodeMetadata& nMd = G.getNodeMetadata(NId);
const MatrixMetadata& mMd = G.getEdgeCosts(EId).getMetadata();
nMd.handleRemoveEdge(mMd, NId == G.getEdgeNode2Id(EId));
if (G.getNodeDegree(NId) == 3) {
// This node is becoming optimally reducible.
moveToOptimallyReducibleNodes(NId);
} else if (nMd.getReductionState() ==
NodeMetadata::NotProvablyAllocatable &&
nMd.isConservativelyAllocatable()) {
// This node just became conservatively allocatable.
moveToConservativelyAllocatableNodes(NId);
}
}
void handleReconnectEdge(EdgeId EId, NodeId NId) {
NodeMetadata& nMd = G.getNodeMetadata(NId);
const MatrixMetadata& mMd = G.getEdgeCosts(EId).getMetadata();
nMd.handleAddEdge(mMd, NId == G.getEdgeNode2Id(EId));
}
void handleSetEdgeCosts(EdgeId EId, const Matrix& NewCosts) {
handleRemoveEdge(EId);
NodeId n1Id = G.getEdgeNode1Id(EId);
NodeId n2Id = G.getEdgeNode2Id(EId);
NodeMetadata& n1Md = G.getNodeMetadata(n1Id);
NodeMetadata& n2Md = G.getNodeMetadata(n2Id);
const MatrixMetadata& mMd = NewCosts.getMetadata();
n1Md.handleAddEdge(mMd, n1Id != G.getEdgeNode1Id(EId));
n2Md.handleAddEdge(mMd, n2Id != G.getEdgeNode1Id(EId));
}
private:
void removeFromCurrentSet(NodeId NId) {
switch (G.getNodeMetadata(NId).getReductionState()) {
case NodeMetadata::Unprocessed: break;
case NodeMetadata::OptimallyReducible:
assert(OptimallyReducibleNodes.find(NId) !=
OptimallyReducibleNodes.end() &&
"Node not in optimally reducible set.");
OptimallyReducibleNodes.erase(NId);
break;
case NodeMetadata::ConservativelyAllocatable:
assert(ConservativelyAllocatableNodes.find(NId) !=
ConservativelyAllocatableNodes.end() &&
"Node not in conservatively allocatable set.");
ConservativelyAllocatableNodes.erase(NId);
break;
case NodeMetadata::NotProvablyAllocatable:
assert(NotProvablyAllocatableNodes.find(NId) !=
NotProvablyAllocatableNodes.end() &&
"Node not in not-provably-allocatable set.");
NotProvablyAllocatableNodes.erase(NId);
break;
}
}
void moveToOptimallyReducibleNodes(NodeId NId) {
removeFromCurrentSet(NId);
OptimallyReducibleNodes.insert(NId);
G.getNodeMetadata(NId).setReductionState(
NodeMetadata::OptimallyReducible);
}
void moveToConservativelyAllocatableNodes(NodeId NId) {
removeFromCurrentSet(NId);
ConservativelyAllocatableNodes.insert(NId);
G.getNodeMetadata(NId).setReductionState(
NodeMetadata::ConservativelyAllocatable);
}
void moveToNotProvablyAllocatableNodes(NodeId NId) {
removeFromCurrentSet(NId);
NotProvablyAllocatableNodes.insert(NId);
G.getNodeMetadata(NId).setReductionState(
NodeMetadata::NotProvablyAllocatable);
}
void setup() {
// Set up worklists.
for (auto NId : G.nodeIds()) {
if (G.getNodeDegree(NId) < 3)
moveToOptimallyReducibleNodes(NId);
else if (G.getNodeMetadata(NId).isConservativelyAllocatable())
moveToConservativelyAllocatableNodes(NId);
else
moveToNotProvablyAllocatableNodes(NId);
}
}
// Compute a reduction order for the graph by iteratively applying PBQP
// reduction rules. Locally optimal rules are applied whenever possible (R0,
// R1, R2). If no locally-optimal rules apply then any conservatively
// allocatable node is reduced. Finally, if no conservatively allocatable
// node exists then the node with the lowest spill-cost:degree ratio is
// selected.
std::vector<GraphBase::NodeId> reduce() {
assert(!G.empty() && "Cannot reduce empty graph.");
typedef GraphBase::NodeId NodeId;
std::vector<NodeId> NodeStack;
// Consume worklists.
while (true) {
if (!OptimallyReducibleNodes.empty()) {
NodeSet::iterator nItr = OptimallyReducibleNodes.begin();
NodeId NId = *nItr;
OptimallyReducibleNodes.erase(nItr);
NodeStack.push_back(NId);
switch (G.getNodeDegree(NId)) {
case 0:
break;
case 1:
applyR1(G, NId);
break;
case 2:
applyR2(G, NId);
break;
default: llvm_unreachable("Not an optimally reducible node.");
}
} else if (!ConservativelyAllocatableNodes.empty()) {
// Conservatively allocatable nodes will never spill. For now just
// take the first node in the set and push it on the stack. When we
// start optimizing more heavily for register preferencing, it may
// would be better to push nodes with lower 'expected' or worst-case
// register costs first (since early nodes are the most
// constrained).
NodeSet::iterator nItr = ConservativelyAllocatableNodes.begin();
NodeId NId = *nItr;
ConservativelyAllocatableNodes.erase(nItr);
NodeStack.push_back(NId);
G.disconnectAllNeighborsFromNode(NId);
} else if (!NotProvablyAllocatableNodes.empty()) {
NodeSet::iterator nItr =
std::min_element(NotProvablyAllocatableNodes.begin(),
NotProvablyAllocatableNodes.end(),
SpillCostComparator(G));
NodeId NId = *nItr;
NotProvablyAllocatableNodes.erase(nItr);
NodeStack.push_back(NId);
G.disconnectAllNeighborsFromNode(NId);
} else
break;
}
return NodeStack;
}
class SpillCostComparator {
public:
SpillCostComparator(const Graph& G) : G(G) {}
bool operator()(NodeId N1Id, NodeId N2Id) {
PBQPNum N1SC = G.getNodeCosts(N1Id)[0] / G.getNodeDegree(N1Id);
PBQPNum N2SC = G.getNodeCosts(N2Id)[0] / G.getNodeDegree(N2Id);
return N1SC < N2SC;
}
private:
const Graph& G;
};
Graph& G;
typedef std::set<NodeId> NodeSet;
NodeSet OptimallyReducibleNodes;
NodeSet ConservativelyAllocatableNodes;
NodeSet NotProvablyAllocatableNodes;
};
typedef Graph<RegAllocSolverImpl> Graph;
Solution solve(Graph& G) {
if (G.empty())
return Solution();
RegAllocSolverImpl RegAllocSolver(G);
return RegAllocSolver.solve();
}
}
}
#endif // LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H