llvm-6502/tools/llvm2cpp/CppWriter.cpp

1121 lines
40 KiB
C++
Raw Normal View History

//===-- CppWriter.cpp - Printing LLVM IR as a C++ Source File -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the writing of the LLVM IR as a set of C++ calls to the
// LLVM IR interface. The input module is assumed to be verified.
//
//===----------------------------------------------------------------------===//
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instruction.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/SymbolTable.h"
#include "llvm/Support/CFG.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <iostream>
using namespace llvm;
namespace {
typedef std::vector<const Type*> TypeList;
typedef std::map<const Type*,std::string> TypeMap;
typedef std::map<const Value*,std::string> ValueMap;
class CppWriter {
std::ostream &Out;
const Module *TheModule;
unsigned long uniqueNum;
TypeMap TypeNames;
ValueMap ValueNames;
TypeMap UnresolvedTypes;
TypeList TypeStack;
public:
inline CppWriter(std::ostream &o, const Module *M)
: Out(o), TheModule(M), uniqueNum(0), TypeNames(),
ValueNames(), UnresolvedTypes(), TypeStack() { }
const Module* getModule() { return TheModule; }
void printModule(const Module *M);
private:
void printTypes(const Module* M);
void printConstants(const Module* M);
void printConstant(const Constant *CPV);
void printGlobal(const GlobalVariable *GV);
void printFunction(const Function *F);
void printInstruction(const Instruction *I, const std::string& bbname);
void printSymbolTable(const SymbolTable &ST);
void printLinkageType(GlobalValue::LinkageTypes LT);
void printCallingConv(unsigned cc);
std::string getCppName(const Type* val);
std::string getCppName(const Value* val);
inline void printCppName(const Value* val);
inline void printCppName(const Type* val);
bool isOnStack(const Type*) const;
inline void printTypeDef(const Type* Ty);
bool printTypeDefInternal(const Type* Ty);
void printEscapedString(const std::string& str);
};
// printEscapedString - Print each character of the specified string, escaping
// it if it is not printable or if it is an escape char.
void
CppWriter::printEscapedString(const std::string &Str) {
for (unsigned i = 0, e = Str.size(); i != e; ++i) {
unsigned char C = Str[i];
if (isprint(C) && C != '"' && C != '\\') {
Out << C;
} else {
Out << '\\'
<< (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
<< (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
}
}
}
std::string
CppWriter::getCppName(const Value* val) {
std::string name;
ValueMap::iterator I = ValueNames.find(val);
if (I != ValueNames.end()) {
name = I->second;
} else {
const char* prefix;
switch (val->getType()->getTypeID()) {
case Type::VoidTyID: prefix = "void_"; break;
case Type::BoolTyID: prefix = "bool_"; break;
case Type::UByteTyID: prefix = "ubyte_"; break;
case Type::SByteTyID: prefix = "sbyte_"; break;
case Type::UShortTyID: prefix = "ushort_"; break;
case Type::ShortTyID: prefix = "short_"; break;
case Type::UIntTyID: prefix = "uint_"; break;
case Type::IntTyID: prefix = "int_"; break;
case Type::ULongTyID: prefix = "ulong_"; break;
case Type::LongTyID: prefix = "long_"; break;
case Type::FloatTyID: prefix = "float_"; break;
case Type::DoubleTyID: prefix = "double_"; break;
case Type::LabelTyID: prefix = "label_"; break;
case Type::FunctionTyID: prefix = "func_"; break;
case Type::StructTyID: prefix = "struct_"; break;
case Type::ArrayTyID: prefix = "array_"; break;
case Type::PointerTyID: prefix = "ptr_"; break;
case Type::PackedTyID: prefix = "packed_"; break;
default: prefix = "other_"; break;
}
name = ValueNames[val] = std::string(prefix) +
(val->hasName() ? val->getName() : utostr(uniqueNum++));
}
return name;
}
void
CppWriter::printCppName(const Value* val) {
printEscapedString(getCppName(val));
}
void
CppWriter::printCppName(const Type* Ty)
{
printEscapedString(getCppName(Ty));
}
// Gets the C++ name for a type. Returns true if we already saw the type,
// false otherwise.
//
inline const std::string*
findTypeName(const SymbolTable& ST, const Type* Ty)
{
SymbolTable::type_const_iterator TI = ST.type_begin();
SymbolTable::type_const_iterator TE = ST.type_end();
for (;TI != TE; ++TI)
if (TI->second == Ty)
return &(TI->first);
return 0;
}
std::string
CppWriter::getCppName(const Type* Ty)
{
// First, handle the primitive types .. easy
if (Ty->isPrimitiveType()) {
switch (Ty->getTypeID()) {
case Type::VoidTyID: return "Type::VoidTy";
case Type::BoolTyID: return "Type::BoolTy";
case Type::UByteTyID: return "Type::UByteTy";
case Type::SByteTyID: return "Type::SByteTy";
case Type::UShortTyID: return "Type::UShortTy";
case Type::ShortTyID: return "Type::ShortTy";
case Type::UIntTyID: return "Type::UIntTy";
case Type::IntTyID: return "Type::IntTy";
case Type::ULongTyID: return "Type::ULongTy";
case Type::LongTyID: return "Type::LongTy";
case Type::FloatTyID: return "Type::FloatTy";
case Type::DoubleTyID: return "Type::DoubleTy";
case Type::LabelTyID: return "Type::LabelTy";
default:
assert(!"Can't get here");
break;
}
return "Type::VoidTy"; // shouldn't be returned, but make it sensible
}
// Now, see if we've seen the type before and return that
TypeMap::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end())
return I->second;
// Okay, let's build a new name for this type. Start with a prefix
const char* prefix = 0;
switch (Ty->getTypeID()) {
case Type::FunctionTyID: prefix = "FuncTy_"; break;
case Type::StructTyID: prefix = "StructTy_"; break;
case Type::ArrayTyID: prefix = "ArrayTy_"; break;
case Type::PointerTyID: prefix = "PointerTy_"; break;
case Type::OpaqueTyID: prefix = "OpaqueTy_"; break;
case Type::PackedTyID: prefix = "PackedTy_"; break;
default: prefix = "OtherTy_"; break; // prevent breakage
}
// See if the type has a name in the symboltable and build accordingly
const std::string* tName = findTypeName(TheModule->getSymbolTable(), Ty);
std::string name;
if (tName)
name = std::string(prefix) + *tName;
else
name = std::string(prefix) + utostr(uniqueNum++);
// Save the name
return TypeNames[Ty] = name;
}
void CppWriter::printModule(const Module *M) {
Out << "\n// Module Construction\n";
Out << "Module* mod = new Module(\"";
if (M->getModuleIdentifier() == "-")
printEscapedString("<stdin>");
else
printEscapedString(M->getModuleIdentifier());
Out << "\");\n";
Out << "mod->setEndianness(";
switch (M->getEndianness()) {
case Module::LittleEndian: Out << "Module::LittleEndian);\n"; break;
case Module::BigEndian: Out << "Module::BigEndian);\n"; break;
case Module::AnyEndianness:Out << "Module::AnyEndianness);\n"; break;
}
Out << "mod->setPointerSize(";
switch (M->getPointerSize()) {
case Module::Pointer32: Out << "Module::Pointer32);\n"; break;
case Module::Pointer64: Out << "Module::Pointer64);\n"; break;
case Module::AnyPointerSize: Out << "Module::AnyPointerSize);\n"; break;
}
if (!M->getTargetTriple().empty())
Out << "mod->setTargetTriple(\"" << M->getTargetTriple() << "\");\n";
if (!M->getModuleInlineAsm().empty()) {
Out << "mod->setModuleInlineAsm(\"";
printEscapedString(M->getModuleInlineAsm());
Out << "\");\n";
}
// Loop over the dependent libraries and emit them.
Module::lib_iterator LI = M->lib_begin();
Module::lib_iterator LE = M->lib_end();
while (LI != LE) {
Out << "mod->addLibrary(\"" << *LI << "\");\n";
++LI;
}
// Print out all the type definitions
Out << "\n// Type Definitions\n";
printTypes(M);
// Print out all the constants declarations
Out << "\n// Constants Construction\n";
printConstants(M);
// Process the global variables
Out << "\n// Global Variable Construction\n";
for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
I != E; ++I) {
printGlobal(I);
}
// Output all of the functions.
Out << "\n// Function Construction\n";
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
printFunction(I);
}
void
CppWriter::printCallingConv(unsigned cc){
// Print the calling convention.
switch (cc) {
default:
case CallingConv::C: Out << "CallingConv::C"; break;
case CallingConv::CSRet: Out << "CallingConv::CSRet"; break;
case CallingConv::Fast: Out << "CallingConv::Fast"; break;
case CallingConv::Cold: Out << "CallingConv::Cold"; break;
case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
}
}
void
CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
switch (LT) {
case GlobalValue::InternalLinkage:
Out << "GlobalValue::InternalLinkage"; break;
case GlobalValue::LinkOnceLinkage:
Out << "GlobalValue::LinkOnceLinkage "; break;
case GlobalValue::WeakLinkage:
Out << "GlobalValue::WeakLinkage"; break;
case GlobalValue::AppendingLinkage:
Out << "GlobalValue::AppendingLinkage"; break;
case GlobalValue::ExternalLinkage:
Out << "GlobalValue::ExternalLinkage"; break;
case GlobalValue::GhostLinkage:
Out << "GlobalValue::GhostLinkage"; break;
}
}
void CppWriter::printGlobal(const GlobalVariable *GV) {
Out << "\n";
Out << "GlobalVariable* ";
printCppName(GV);
Out << " = new GlobalVariable(\n";
Out << " /*Type=*/";
printCppName(GV->getType()->getElementType());
Out << ",\n";
Out << " /*isConstant=*/" << (GV->isConstant()?"true":"false")
<< ",\n /*Linkage=*/";
printLinkageType(GV->getLinkage());
Out << ",\n /*Initializer=*/";
if (GV->hasInitializer()) {
printCppName(GV->getInitializer());
} else {
Out << "0";
}
Out << ",\n /*Name=*/\"";
printEscapedString(GV->getName());
Out << "\",\n mod);\n";
if (GV->hasSection()) {
printCppName(GV);
Out << "->setSection(\"";
printEscapedString(GV->getSection());
Out << "\");\n";
}
if (GV->getAlignment()) {
printCppName(GV);
Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");\n";
};
}
bool
CppWriter::isOnStack(const Type* Ty) const {
TypeList::const_iterator TI =
std::find(TypeStack.begin(),TypeStack.end(),Ty);
return TI != TypeStack.end();
}
// Prints a type definition. Returns true if it could not resolve all the types
// in the definition but had to use a forward reference.
void
CppWriter::printTypeDef(const Type* Ty) {
assert(TypeStack.empty());
TypeStack.clear();
printTypeDefInternal(Ty);
assert(TypeStack.empty());
// early resolve as many unresolved types as possible. Search the unresolved
// types map for the type we just printed. Now that its definition is complete
// we can resolve any preview references to it. This prevents a cascade of
// unresolved types.
TypeMap::iterator I = UnresolvedTypes.find(Ty);
if (I != UnresolvedTypes.end()) {
Out << "cast<OpaqueType>(" << I->second
<< "_fwd.get())->refineAbstractTypeTo(" << I->second << ");\n";
Out << I->second << " = cast<";
switch (Ty->getTypeID()) {
case Type::FunctionTyID: Out << "FunctionType"; break;
case Type::ArrayTyID: Out << "ArrayType"; break;
case Type::StructTyID: Out << "StructType"; break;
case Type::PackedTyID: Out << "PackedType"; break;
case Type::PointerTyID: Out << "PointerType"; break;
case Type::OpaqueTyID: Out << "OpaqueType"; break;
default: Out << "NoSuchDerivedType"; break;
}
Out << ">(" << I->second << "_fwd.get());\n\n";
UnresolvedTypes.erase(I);
}
}
bool
CppWriter::printTypeDefInternal(const Type* Ty) {
// We don't print definitions for primitive types
if (Ty->isPrimitiveType())
return false;
// Determine if the name is in the name list before we modify that list.
TypeMap::const_iterator TNI = TypeNames.find(Ty);
// Everything below needs the name for the type so get it now
std::string typeName(getCppName(Ty));
// Search the type stack for recursion. If we find it, then generate this
// as an OpaqueType, but make sure not to do this multiple times because
// the type could appear in multiple places on the stack. Once the opaque
// definition is issues, it must not be re-issued. Consequently we have to
// check the UnresolvedTypes list as well.
if (isOnStack(Ty)) {
TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
if (I == UnresolvedTypes.end()) {
Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();\n";
UnresolvedTypes[Ty] = typeName;
return true;
}
}
// Avoid printing things we have already printed. Since TNI was obtained
// before the name was inserted with getCppName and because we know the name
// is not on the stack (currently being defined), we can surmise here that if
// we got the name we've also already emitted its definition.
if (TNI != TypeNames.end())
return false;
// We're going to print a derived type which, by definition, contains other
// types. So, push this one we're printing onto the type stack to assist with
// recursive definitions.
TypeStack.push_back(Ty); // push on type stack
bool didRecurse = false;
// Print the type definition
switch (Ty->getTypeID()) {
case Type::FunctionTyID: {
const FunctionType* FT = cast<FunctionType>(Ty);
Out << "std::vector<const Type*>" << typeName << "_args;\n";
FunctionType::param_iterator PI = FT->param_begin();
FunctionType::param_iterator PE = FT->param_end();
for (; PI != PE; ++PI) {
const Type* argTy = static_cast<const Type*>(*PI);
bool isForward = printTypeDefInternal(argTy);
std::string argName(getCppName(argTy));
Out << typeName << "_args.push_back(" << argName;
if (isForward)
Out << "_fwd";
Out << ");\n";
}
bool isForward = printTypeDefInternal(FT->getReturnType());
std::string retTypeName(getCppName(FT->getReturnType()));
Out << "FunctionType* " << typeName << " = FunctionType::get(\n"
<< " /*Result=*/" << retTypeName;
if (isForward)
Out << "_fwd";
Out << ",\n /*Params=*/" << typeName << "_args,\n /*isVarArg=*/"
<< (FT->isVarArg() ? "true" : "false") << ");\n";
break;
}
case Type::StructTyID: {
const StructType* ST = cast<StructType>(Ty);
Out << "std::vector<const Type*>" << typeName << "_fields;\n";
StructType::element_iterator EI = ST->element_begin();
StructType::element_iterator EE = ST->element_end();
for (; EI != EE; ++EI) {
const Type* fieldTy = static_cast<const Type*>(*EI);
bool isForward = printTypeDefInternal(fieldTy);
std::string fieldName(getCppName(fieldTy));
Out << typeName << "_fields.push_back(" << fieldName;
if (isForward)
Out << "_fwd";
Out << ");\n";
}
Out << "StructType* " << typeName << " = StructType::get("
<< typeName << "_fields);\n";
break;
}
case Type::ArrayTyID: {
const ArrayType* AT = cast<ArrayType>(Ty);
const Type* ET = AT->getElementType();
bool isForward = printTypeDefInternal(ET);
std::string elemName(getCppName(ET));
Out << "ArrayType* " << typeName << " = ArrayType::get("
<< elemName << (isForward ? "_fwd" : "")
<< ", " << utostr(AT->getNumElements()) << ");\n";
break;
}
case Type::PointerTyID: {
const PointerType* PT = cast<PointerType>(Ty);
const Type* ET = PT->getElementType();
bool isForward = printTypeDefInternal(ET);
std::string elemName(getCppName(ET));
Out << "PointerType* " << typeName << " = PointerType::get("
<< elemName << (isForward ? "_fwd" : "") << ");\n";
break;
}
case Type::PackedTyID: {
const PackedType* PT = cast<PackedType>(Ty);
const Type* ET = PT->getElementType();
bool isForward = printTypeDefInternal(ET);
std::string elemName(getCppName(ET));
Out << "PackedType* " << typeName << " = PackedType::get("
<< elemName << (isForward ? "_fwd" : "")
<< ", " << utostr(PT->getNumElements()) << ");\n";
break;
}
case Type::OpaqueTyID: {
const OpaqueType* OT = cast<OpaqueType>(Ty);
Out << "OpaqueType* " << typeName << " = OpaqueType::get();\n";
break;
}
default:
assert(!"Invalid TypeID");
}
// If the type had a name, make sure we recreate it.
const std::string* progTypeName =
findTypeName(TheModule->getSymbolTable(),Ty);
if (progTypeName)
Out << "mod->addTypeName(\"" << *progTypeName << "\", "
<< typeName << ");\n";
// Pop us off the type stack
TypeStack.pop_back();
Out << "\n";
// We weren't a recursive type
return false;
}
void
CppWriter::printTypes(const Module* M) {
// Add all of the global variables to the value table...
for (Module::const_global_iterator I = TheModule->global_begin(),
E = TheModule->global_end(); I != E; ++I) {
if (I->hasInitializer())
printTypeDef(I->getInitializer()->getType());
printTypeDef(I->getType());
}
// Add all the functions to the table
for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
FI != FE; ++FI) {
printTypeDef(FI->getReturnType());
printTypeDef(FI->getFunctionType());
// Add all the function arguments
for(Function::const_arg_iterator AI = FI->arg_begin(),
AE = FI->arg_end(); AI != AE; ++AI) {
printTypeDef(AI->getType());
}
// Add all of the basic blocks and instructions
for (Function::const_iterator BB = FI->begin(),
E = FI->end(); BB != E; ++BB) {
printTypeDef(BB->getType());
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
++I) {
printTypeDef(I->getType());
}
}
}
}
void
CppWriter::printConstants(const Module* M) {
// Add all of the global variables to the value table...
for (Module::const_global_iterator I = TheModule->global_begin(),
E = TheModule->global_end(); I != E; ++I)
if (I->hasInitializer())
printConstant(I->getInitializer());
// Traverse the LLVM functions looking for constants
for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
FI != FE; ++FI) {
// Add all of the basic blocks and instructions
for (Function::const_iterator BB = FI->begin(),
E = FI->end(); BB != E; ++BB) {
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
++I) {
for (unsigned i = 0; i < I->getNumOperands(); ++i) {
if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
printConstant(C);
}
}
}
}
}
}
// printConstant - Print out a constant pool entry...
void CppWriter::printConstant(const Constant *CV) {
// First, if the constant is in the constant list then we've printed it
// already and we shouldn't reprint it.
if (ValueNames.find(CV) != ValueNames.end())
return;
const int IndentSize = 2;
static std::string Indent = "\n";
std::string constName(getCppName(CV));
std::string typeName(getCppName(CV->getType()));
if (CV->isNullValue()) {
Out << "Constant* " << constName << " = Constant::getNullValue("
<< typeName << ");\n";
return;
}
if (isa<GlobalValue>(CV)) {
// Skip variables and functions, we emit them elsewhere
return;
}
if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
Out << "Constant* " << constName << " = ConstantBool::get("
<< (CB == ConstantBool::True ? "true" : "false")
<< ");";
} else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
Out << "Constant* " << constName << " = ConstantSInt::get("
<< typeName << ", " << CI->getValue() << ");";
} else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
Out << "Constant* " << constName << " = ConstantUInt::get("
<< typeName << ", " << CI->getValue() << ");";
} else if (isa<ConstantAggregateZero>(CV)) {
Out << "Constant* " << constName << " = ConstantAggregateZero::get("
<< typeName << ");";
} else if (isa<ConstantPointerNull>(CV)) {
Out << "Constant* " << constName << " = ConstanPointerNull::get("
<< typeName << ");";
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
Out << "ConstantFP::get(" << typeName << ", ";
// We would like to output the FP constant value in exponential notation,
// but we cannot do this if doing so will lose precision. Check here to
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
//
std::string StrVal = ftostr(CFP->getValue());
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check that
// the string matches the "[-+]?[0-9]" regex.
//
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9')))
// Reparse stringized version!
if (atof(StrVal.c_str()) == CFP->getValue()) {
Out << StrVal;
return;
}
// Otherwise we could not reparse it to exactly the same value, so we must
// output the string in hexadecimal format!
assert(sizeof(double) == sizeof(uint64_t) &&
"assuming that double is 64 bits!");
Out << "0x" << utohexstr(DoubleToBits(CFP->getValue())) << ");";
} else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
if (CA->isString() && CA->getType()->getElementType() == Type::SByteTy) {
Out << "Constant* " << constName << " = ConstantArray::get(\"";
printEscapedString(CA->getAsString());
Out << "\");";
} else {
Out << "std::vector<Constant*> " << constName << "_elems;\n";
unsigned N = CA->getNumOperands();
for (unsigned i = 0; i < N; ++i) {
printConstant(CA->getOperand(i));
Out << constName << "_elems.push_back("
<< getCppName(CA->getOperand(i)) << ");\n";
}
Out << "Constant* " << constName << " = ConstantArray::get("
<< typeName << ", " << constName << "_elems);";
}
} else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
Out << "std::vector<Constant*> " << constName << "_fields;\n";
unsigned N = CS->getNumOperands();
for (unsigned i = 0; i < N; i++) {
printConstant(CS->getOperand(i));
Out << constName << "_fields.push_back("
<< getCppName(CA->getOperand(i)) << ");\n";
}
Out << "Constant* " << constName << " = ConstantStruct::get("
<< typeName << ", " << constName << "_fields);";
} else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
Out << "std::vector<Constant*> " << constName << "_elems;\n";
unsigned N = CP->getNumOperands();
for (unsigned i = 0; i < N; ++i) {
printConstant(CP->getOperand(i));
Out << constName << "_elems.push_back("
<< getCppName(CP->getOperand(i)) << ");\n";
}
Out << "Constant* " << constName << " = ConstantPacked::get("
<< typeName << ", " << constName << "_elems);";
} else if (isa<UndefValue>(CV)) {
Out << "Constant* " << constName << " = UndefValue::get("
<< typeName << ");";
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
if (CE->getOpcode() == Instruction::GetElementPtr) {
Out << "std::vector<Constant*> " << constName << "_indices;\n";
for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
Out << constName << "_indices.push_back("
<< getCppName(CE->getOperand(i)) << ");\n";
}
Out << "Constant* " << constName << " = new GetElementPtrInst("
<< getCppName(CE->getOperand(0)) << ", " << constName << "_indices";
} else if (CE->getOpcode() == Instruction::Cast) {
Out << "Constant* " << constName << " = ConstantExpr::getCast(";
Out << getCppName(CE->getOperand(0)) << ", " << getCppName(CE->getType())
<< ");";
} else {
Out << "Constant* " << constName << " = ConstantExpr::";
switch (CE->getOpcode()) {
case Instruction::Add: Out << "getAdd"; break;
case Instruction::Sub: Out << "getSub"; break;
case Instruction::Mul: Out << "getMul"; break;
case Instruction::Div: Out << "getDiv"; break;
case Instruction::Rem: Out << "getRem"; break;
case Instruction::And: Out << "getAnd"; break;
case Instruction::Or: Out << "getOr"; break;
case Instruction::Xor: Out << "getXor"; break;
case Instruction::SetEQ: Out << "getSetEQ"; break;
case Instruction::SetNE: Out << "getSetNE"; break;
case Instruction::SetLE: Out << "getSetLE"; break;
case Instruction::SetGE: Out << "getSetGE"; break;
case Instruction::SetLT: Out << "getSetLT"; break;
case Instruction::SetGT: Out << "getSetGT"; break;
case Instruction::Shl: Out << "getShl"; break;
case Instruction::Shr: Out << "getShr"; break;
case Instruction::Select: Out << "getSelect"; break;
case Instruction::ExtractElement: Out << "getExtractElement"; break;
case Instruction::InsertElement: Out << "getInsertElement"; break;
case Instruction::ShuffleVector: Out << "getShuffleVector"; break;
default:
assert(!"Invalid constant expression");
break;
}
Out << getCppName(CE->getOperand(0));
for (unsigned i = 1; i < CE->getNumOperands(); ++i)
Out << ", " << getCppName(CE->getOperand(i));
Out << ");";
}
} else {
assert(!"Bad Constant");
Out << "Constant* " << constName << " = 0; ";
}
Out << "\n";
}
/// printFunction - Print all aspects of a function.
///
void CppWriter::printFunction(const Function *F) {
std::string funcTypeName(getCppName(F->getFunctionType()));
Out << "Function* ";
printCppName(F);
Out << " = new Function(" << funcTypeName << ", " ;
printLinkageType(F->getLinkage());
Out << ",\n \"" << F->getName() << "\", mod);\n";
printCppName(F);
Out << "->setCallingConv(";
printCallingConv(F->getCallingConv());
Out << ");\n";
if (F->hasSection()) {
printCppName(F);
Out << "->setSection(" << F->getSection() << ");\n";
}
if (F->getAlignment()) {
printCppName(F);
Out << "->setAlignment(" << F->getAlignment() << ");\n";
}
if (!F->isExternal()) {
Out << "{\n";
// Create all the argument values
for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
AI != AE; ++AI) {
Out << " Argument* " << getCppName(AI) << " = new Argument("
<< getCppName(AI->getType()) << ", \"";
printEscapedString(AI->getName());
Out << "\", " << getCppName(F) << ");\n";
}
// Create all the basic blocks
for (Function::const_iterator BI = F->begin(), BE = F->end();
BI != BE; ++BI) {
std::string bbname(getCppName(BI));
Out << " BasicBlock* " << bbname << " = new BasicBlock(\"";
if (BI->hasName())
printEscapedString(BI->getName());
Out << "\"," << getCppName(BI->getParent()) << ",0);\n";
}
// Output all of its basic blocks... for the function
for (Function::const_iterator BI = F->begin(), BE = F->end();
BI != BE; ++BI) {
// Output all of the instructions in the basic block...
Out << " {\n";
for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
I != E; ++I) {
std::string bbname(getCppName(BI));
printInstruction(I,bbname);
}
Out << " }\n";
}
Out << "}\n";
}
}
// printInstruction - This member is called for each Instruction in a function.
void
CppWriter::printInstruction(const Instruction *I, const std::string& bbname)
{
std::string iName(getCppName(I));
switch (I->getOpcode()) {
case Instruction::Ret: {
const ReturnInst* ret = cast<ReturnInst>(I);
Out << " ReturnInst* " << iName << " = new ReturnInst(";
if (ret->getReturnValue())
Out << getCppName(ret->getReturnValue()) << ", ";
Out << bbname << ");";
break;
}
case Instruction::Br: {
const BranchInst* br = cast<BranchInst>(I);
Out << " BranchInst* " << iName << " = new BranchInst(" ;
if (br->getNumOperands() == 3 ) {
Out << getCppName(br->getOperand(0)) << ", "
<< getCppName(br->getOperand(1)) << ", "
<< getCppName(br->getOperand(2)) << ", ";
} else if (br->getNumOperands() == 1) {
Out << getCppName(br->getOperand(0)) << ", ";
} else {
assert(!"branch with 2 operands?");
}
Out << bbname << ");";
break;
}
case Instruction::Switch:
case Instruction::Invoke:
case Instruction::Unwind:
case Instruction::Unreachable:
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::Div:
case Instruction::Rem:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::SetEQ:
case Instruction::SetNE:
case Instruction::SetLE:
case Instruction::SetGE:
case Instruction::SetLT:
case Instruction::SetGT:
break;
case Instruction::Malloc: {
const MallocInst* mallocI = cast<MallocInst>(I);
Out << " MallocInst* " << iName << " = new MallocInst("
<< getCppName(mallocI->getAllocatedType()) << ", ";
if (mallocI->isArrayAllocation())
Out << getCppName(mallocI->getArraySize()) << ", ";
Out << "\"";
printEscapedString(mallocI->getName());
Out << "\", " << bbname << ");";
if (mallocI->getAlignment())
Out << "\n " << iName << "->setAlignment("
<< mallocI->getAlignment() << ");";
break;
}
case Instruction::Free:
case Instruction::Alloca: {
const AllocaInst* allocaI = cast<AllocaInst>(I);
Out << " AllocaInst* " << iName << " = new AllocaInst("
<< getCppName(allocaI->getAllocatedType()) << ", ";
if (allocaI->isArrayAllocation())
Out << getCppName(allocaI->getArraySize()) << ", ";
Out << "\"";
printEscapedString(allocaI->getName());
Out << "\", " << bbname << ");";
if (allocaI->getAlignment())
Out << "\n " << iName << "->setAlignment("
<< allocaI->getAlignment() << ");";
break;
}
case Instruction::Load:
break;
case Instruction::Store: {
const StoreInst* store = cast<StoreInst>(I);
Out << " StoreInst* " << iName << " = new StoreInst("
<< getCppName(store->getOperand(0)) << ", "
<< getCppName(store->getOperand(1)) << ", " << bbname << ");\n";
if (store->isVolatile())
Out << "iName->setVolatile(true);";
break;
}
case Instruction::GetElementPtr: {
const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
if (gep->getNumOperands() <= 2) {
Out << " GetElementPtrInst* " << iName << " = new GetElementPtrInst("
<< getCppName(gep->getOperand(0));
if (gep->getNumOperands() == 2)
Out << ", " << getCppName(gep->getOperand(1));
Out << ", " << bbname;
} else {
Out << " std::vector<Value*> " << iName << "_indices;\n";
for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
Out << " " << iName << "_indices.push_back("
<< getCppName(gep->getOperand(i)) << ");\n";
}
Out << " Instruction* " << iName << " = new GetElementPtrInst("
<< getCppName(gep->getOperand(0)) << ", " << iName << "_indices";
}
Out << ", \"";
printEscapedString(gep->getName());
Out << "\", " << bbname << ");";
break;
}
case Instruction::PHI:
case Instruction::Cast:
case Instruction::Call:
case Instruction::Shl:
case Instruction::Shr:
case Instruction::Select:
case Instruction::UserOp1:
case Instruction::UserOp2:
case Instruction::VAArg:
case Instruction::ExtractElement:
case Instruction::InsertElement:
case Instruction::ShuffleVector:
break;
}
Out << "\n";
/*
// Print out name if it exists...
if (I.hasName())
Out << getLLVMName(I.getName()) << " = ";
// If this is a volatile load or store, print out the volatile marker.
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
(isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
Out << "volatile ";
} else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
// If this is a call, check if it's a tail call.
Out << "tail ";
}
// Print out the opcode...
Out << I.getOpcodeName();
// Print out the type of the operands...
const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
// Special case conditional branches to swizzle the condition out to the front
if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
writeOperand(I.getOperand(2), true);
Out << ',';
writeOperand(Operand, true);
Out << ',';
writeOperand(I.getOperand(1), true);
} else if (isa<SwitchInst>(I)) {
// Special case switch statement to get formatting nice and correct...
writeOperand(Operand , true); Out << ',';
writeOperand(I.getOperand(1), true); Out << " [";
for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
Out << "\n\t\t";
writeOperand(I.getOperand(op ), true); Out << ',';
writeOperand(I.getOperand(op+1), true);
}
Out << "\n\t]";
} else if (isa<PHINode>(I)) {
Out << ' ';
printType(I.getType());
Out << ' ';
for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
if (op) Out << ", ";
Out << '[';
writeOperand(I.getOperand(op ), false); Out << ',';
writeOperand(I.getOperand(op+1), false); Out << " ]";
}
} else if (isa<ReturnInst>(I) && !Operand) {
Out << " void";
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
// Print the calling convention being used.
switch (CI->getCallingConv()) {
case CallingConv::C: break; // default
case CallingConv::CSRet: Out << " csretcc"; break;
case CallingConv::Fast: Out << " fastcc"; break;
case CallingConv::Cold: Out << " coldcc"; break;
default: Out << " cc" << CI->getCallingConv(); break;
}
const PointerType *PTy = cast<PointerType>(Operand->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
const Type *RetTy = FTy->getReturnType();
// If possible, print out the short form of the call instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
if (!FTy->isVarArg() &&
(!isa<PointerType>(RetTy) ||
!isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
Out << ' '; printType(RetTy);
writeOperand(Operand, false);
} else {
writeOperand(Operand, true);
}
Out << '(';
if (CI->getNumOperands() > 1) writeOperand(CI->getOperand(1), true);
for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
Out << ',';
writeOperand(I.getOperand(op), true);
}
Out << " )";
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
const PointerType *PTy = cast<PointerType>(Operand->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
const Type *RetTy = FTy->getReturnType();
// Print the calling convention being used.
switch (II->getCallingConv()) {
case CallingConv::C: break; // default
case CallingConv::CSRet: Out << " csretcc"; break;
case CallingConv::Fast: Out << " fastcc"; break;
case CallingConv::Cold: Out << " coldcc"; break;
default: Out << " cc" << II->getCallingConv(); break;
}
// If possible, print out the short form of the invoke instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
if (!FTy->isVarArg() &&
(!isa<PointerType>(RetTy) ||
!isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
Out << ' '; printType(RetTy);
writeOperand(Operand, false);
} else {
writeOperand(Operand, true);
}
Out << '(';
if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
Out << ',';
writeOperand(I.getOperand(op), true);
}
Out << " )\n\t\t\tto";
writeOperand(II->getNormalDest(), true);
Out << " unwind";
writeOperand(II->getUnwindDest(), true);
} else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
Out << ' ';
printType(AI->getType()->getElementType());
if (AI->isArrayAllocation()) {
Out << ',';
writeOperand(AI->getArraySize(), true);
}
if (AI->getAlignment()) {
Out << ", align " << AI->getAlignment();
}
} else if (isa<CastInst>(I)) {
if (Operand) writeOperand(Operand, true); // Work with broken code
Out << " to ";
printType(I.getType());
} else if (isa<VAArgInst>(I)) {
if (Operand) writeOperand(Operand, true); // Work with broken code
Out << ", ";
printType(I.getType());
} else if (Operand) { // Print the normal way...
// PrintAllTypes - Instructions who have operands of all the same type
// omit the type from all but the first operand. If the instruction has
// different type operands (for example br), then they are all printed.
bool PrintAllTypes = false;
const Type *TheType = Operand->getType();
// Shift Left & Right print both types even for Ubyte LHS, and select prints
// types even if all operands are bools.
if (isa<ShiftInst>(I) || isa<SelectInst>(I) || isa<StoreInst>(I) ||
isa<ShuffleVectorInst>(I)) {
PrintAllTypes = true;
} else {
for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
Operand = I.getOperand(i);
if (Operand->getType() != TheType) {
PrintAllTypes = true; // We have differing types! Print them all!
break;
}
}
}
if (!PrintAllTypes) {
Out << ' ';
printType(TheType);
}
for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
if (i) Out << ',';
writeOperand(I.getOperand(i), PrintAllTypes);
}
}
Out << "\n";
*/
}
} // end anonymous llvm
namespace llvm {
void WriteModuleToCppFile(Module* mod, std::ostream& o) {
o << "#include <llvm/Module.h>\n";
o << "#include <llvm/DerivedTypes.h>\n";
o << "#include <llvm/Constants.h>\n";
o << "#include <llvm/GlobalVariable.h>\n";
o << "#include <llvm/Function.h>\n";
o << "#include <llvm/CallingConv.h>\n";
o << "#include <llvm/BasicBlock.h>\n";
o << "#include <llvm/Instructions.h>\n";
o << "#include <llvm/Pass.h>\n";
o << "#include <llvm/PassManager.h>\n";
o << "#include <llvm/Analysis/Verifier.h>\n";
o << "#include <llvm/Assembly/PrintModulePass.h>\n";
o << "#include <algorithm>\n";
o << "#include <iostream>\n\n";
o << "using namespace llvm;\n\n";
o << "Module* makeLLVMModule();\n\n";
o << "int main(int argc, char**argv) {\n";
o << " Module* Mod = makeLLVMModule();\n";
o << " verifyModule(*Mod, PrintMessageAction);\n";
o << " std::cerr.flush();\n";
o << " std::cout.flush();\n";
o << " PassManager PM;\n";
o << " PM.add(new PrintModulePass(&std::cout));\n";
o << " PM.run(*Mod);\n";
o << " return 0;\n";
o << "}\n\n";
o << "Module* makeLLVMModule() {\n";
CppWriter W(o, mod);
W.printModule(mod);
o << "return mod;\n";
o << "}\n";
}
}