llvm-6502/include/llvm/InstrTypes.h

334 lines
13 KiB
C
Raw Normal View History

//===-- llvm/InstrTypes.h - Important Instruction subclasses ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines various meta classes of instructions that exist in the VM
// representation. Specific concrete subclasses of these may be found in the
// i*.h files...
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_INSTRUCTION_TYPES_H
#define LLVM_INSTRUCTION_TYPES_H
#include "llvm/Instruction.h"
namespace llvm {
//===----------------------------------------------------------------------===//
// TerminatorInst Class
//===----------------------------------------------------------------------===//
/// TerminatorInst - Subclasses of this class are all able to terminate a basic
/// block. Thus, these are all the flow control type of operations.
///
class TerminatorInst : public Instruction {
protected:
TerminatorInst(Instruction::TermOps iType, Use *Ops, unsigned NumOps,
Instruction *InsertBefore = 0);
TerminatorInst(const Type *Ty, Instruction::TermOps iType,
Use *Ops, unsigned NumOps,
const std::string &Name = "", Instruction *InsertBefore = 0)
: Instruction(Ty, iType, Ops, NumOps, Name, InsertBefore) {}
TerminatorInst(Instruction::TermOps iType, Use *Ops, unsigned NumOps,
BasicBlock *InsertAtEnd);
TerminatorInst(const Type *Ty, Instruction::TermOps iType,
Use *Ops, unsigned NumOps,
const std::string &Name, BasicBlock *InsertAtEnd)
: Instruction(Ty, iType, Ops, NumOps, Name, InsertAtEnd) {}
// Out of line virtual method, so the vtable, etc has a home.
~TerminatorInst();
/// Virtual methods - Terminators should overload these and provide inline
/// overrides of non-V methods.
virtual BasicBlock *getSuccessorV(unsigned idx) const = 0;
virtual unsigned getNumSuccessorsV() const = 0;
virtual void setSuccessorV(unsigned idx, BasicBlock *B) = 0;
public:
virtual Instruction *clone() const = 0;
/// getNumSuccessors - Return the number of successors that this terminator
/// has.
unsigned getNumSuccessors() const {
return getNumSuccessorsV();
}
/// getSuccessor - Return the specified successor.
///
BasicBlock *getSuccessor(unsigned idx) const {
return getSuccessorV(idx);
}
/// setSuccessor - Update the specified successor to point at the provided
/// block.
void setSuccessor(unsigned idx, BasicBlock *B) {
setSuccessorV(idx, B);
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const TerminatorInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() >= TermOpsBegin && I->getOpcode() < TermOpsEnd;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// UnaryInstruction Class
//===----------------------------------------------------------------------===//
class UnaryInstruction : public Instruction {
Use Op;
protected:
UnaryInstruction(const Type *Ty, unsigned iType, Value *V,
const std::string &Name = "", Instruction *IB = 0)
: Instruction(Ty, iType, &Op, 1, Name, IB), Op(V, this) {
}
UnaryInstruction(const Type *Ty, unsigned iType, Value *V,
const std::string &Name, BasicBlock *IAE)
: Instruction(Ty, iType, &Op, 1, Name, IAE), Op(V, this) {
}
public:
// Out of line virtual method, so the vtable, etc has a home.
~UnaryInstruction();
// Transparently provide more efficient getOperand methods.
Value *getOperand(unsigned i) const {
assert(i == 0 && "getOperand() out of range!");
return Op;
}
void setOperand(unsigned i, Value *Val) {
assert(i == 0 && "setOperand() out of range!");
Op = Val;
}
unsigned getNumOperands() const { return 1; }
};
//===----------------------------------------------------------------------===//
// BinaryOperator Class
//===----------------------------------------------------------------------===//
class BinaryOperator : public Instruction {
Use Ops[2];
protected:
void init(BinaryOps iType);
BinaryOperator(BinaryOps iType, Value *S1, Value *S2, const Type *Ty,
const std::string &Name, Instruction *InsertBefore)
: Instruction(Ty, iType, Ops, 2, Name, InsertBefore) {
Ops[0].init(S1, this);
Ops[1].init(S2, this);
init(iType);
}
BinaryOperator(BinaryOps iType, Value *S1, Value *S2, const Type *Ty,
const std::string &Name, BasicBlock *InsertAtEnd)
: Instruction(Ty, iType, Ops, 2, Name, InsertAtEnd) {
Ops[0].init(S1, this);
Ops[1].init(S2, this);
init(iType);
}
public:
/// Transparently provide more efficient getOperand methods.
Value *getOperand(unsigned i) const {
assert(i < 2 && "getOperand() out of range!");
return Ops[i];
}
void setOperand(unsigned i, Value *Val) {
assert(i < 2 && "setOperand() out of range!");
Ops[i] = Val;
}
unsigned getNumOperands() const { return 2; }
/// create() - Construct a binary instruction, given the opcode and the two
/// operands. Optionally (if InstBefore is specified) insert the instruction
/// into a BasicBlock right before the specified instruction. The specified
/// Instruction is allowed to be a dereferenced end iterator.
///
static BinaryOperator *create(BinaryOps Op, Value *S1, Value *S2,
const std::string &Name = "",
Instruction *InsertBefore = 0);
/// create() - Construct a binary instruction, given the opcode and the two
/// operands. Also automatically insert this instruction to the end of the
/// BasicBlock specified.
///
static BinaryOperator *create(BinaryOps Op, Value *S1, Value *S2,
const std::string &Name,
BasicBlock *InsertAtEnd);
/// create* - These methods just forward to create, and are useful when you
/// statically know what type of instruction you're going to create. These
/// helpers just save some typing.
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
static BinaryOperator *create##OPC(Value *V1, Value *V2, \
const std::string &Name = "") {\
return create(Instruction::OPC, V1, V2, Name);\
}
#include "llvm/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
static BinaryOperator *create##OPC(Value *V1, Value *V2, \
const std::string &Name, BasicBlock *BB) {\
return create(Instruction::OPC, V1, V2, Name, BB);\
}
#include "llvm/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
static BinaryOperator *create##OPC(Value *V1, Value *V2, \
const std::string &Name, Instruction *I) {\
return create(Instruction::OPC, V1, V2, Name, I);\
}
#include "llvm/Instruction.def"
/// Helper functions to construct and inspect unary operations (NEG and NOT)
/// via binary operators SUB and XOR:
///
/// createNeg, createNot - Create the NEG and NOT
/// instructions out of SUB and XOR instructions.
///
static BinaryOperator *createNeg(Value *Op, const std::string &Name = "",
Instruction *InsertBefore = 0);
static BinaryOperator *createNeg(Value *Op, const std::string &Name,
BasicBlock *InsertAtEnd);
static BinaryOperator *createNot(Value *Op, const std::string &Name = "",
Instruction *InsertBefore = 0);
static BinaryOperator *createNot(Value *Op, const std::string &Name,
BasicBlock *InsertAtEnd);
/// isNeg, isNot - Check if the given Value is a NEG or NOT instruction.
///
static bool isNeg(const Value *V);
static bool isNot(const Value *V);
/// getNegArgument, getNotArgument - Helper functions to extract the
/// unary argument of a NEG or NOT operation implemented via Sub or Xor.
///
static const Value *getNegArgument(const Value *BinOp);
static Value *getNegArgument( Value *BinOp);
static const Value *getNotArgument(const Value *BinOp);
static Value *getNotArgument( Value *BinOp);
BinaryOps getOpcode() const {
return static_cast<BinaryOps>(Instruction::getOpcode());
}
virtual BinaryOperator *clone() const;
/// swapOperands - Exchange the two operands to this instruction.
/// This instruction is safe to use on any binary instruction and
/// does not modify the semantics of the instruction. If the
/// instruction is order dependent (SetLT f.e.) the opcode is
/// changed. If the instruction cannot be reversed (ie, it's a Div),
/// then return true.
///
bool swapOperands();
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const BinaryOperator *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() >= BinaryOpsBegin && I->getOpcode() < BinaryOpsEnd;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// CmpInst Class
//===----------------------------------------------------------------------===//
/// This class is the base class for the comparison instructions.
/// @brief Abstract base class of comparison instructions.
class CmpInst: public Instruction {
CmpInst(); // do not implement
protected:
CmpInst(Instruction::OtherOps op, unsigned short pred, Value *LHS, Value *RHS,
const std::string &Name = "", Instruction *InsertBefore = 0);
CmpInst(Instruction::OtherOps op, unsigned short pred, Value *LHS, Value *RHS,
const std::string &Name, BasicBlock *InsertAtEnd);
Use Ops[2]; // CmpInst instructions always have 2 operands, optimize
public:
/// Construct a compare instruction, given the opcode, the predicate and
/// the two operands. Optionally (if InstBefore is specified) insert the
/// instruction into a BasicBlock right before the specified instruction.
/// The specified Instruction is allowed to be a dereferenced end iterator.
/// @brief Create a CmpInst
static CmpInst *create(OtherOps Op, unsigned short predicate, Value *S1,
Value *S2, const std::string &Name = "",
Instruction *InsertBefore = 0);
/// Construct a compare instruction, given the opcode, the predicate and the
/// two operands. Also automatically insert this instruction to the end of
/// the BasicBlock specified.
/// @brief Create a CmpInst
static CmpInst *create(OtherOps Op, unsigned short predicate, Value *S1,
Value *S2, const std::string &Name,
BasicBlock *InsertAtEnd);
/// @brief Implement superclass method.
virtual CmpInst *clone() const;
/// The predicate for CmpInst is defined by the subclasses but stored in
/// the SubclassData field (see Value.h). We allow it to be fetched here
/// as the predicate but there is no enum type for it, just the raw unsigned
/// short. This facilitates comparison of CmpInst instances without delving
/// into the subclasses since predicate values are distinct between the
/// CmpInst subclasses.
/// @brief Return the predicate for this instruction.
unsigned short getPredicate() const {
return SubclassData;
}
/// @brief Provide more efficient getOperand methods.
Value *getOperand(unsigned i) const {
assert(i < 2 && "getOperand() out of range!");
return Ops[i];
}
void setOperand(unsigned i, Value *Val) {
assert(i < 2 && "setOperand() out of range!");
Ops[i] = Val;
}
/// @brief CmpInst instructions always have 2 operands.
unsigned getNumOperands() const { return 2; }
/// This is just a convenience that dispatches to the subclasses.
/// @brief Swap the operands.
void swapOperands();
/// This is just a convenience that dispatches to the subclasses.
/// @brief Determine if this CmpInst is commutative.
bool isCommutative();
/// This is just a convenience that dispatches to the subclasses.
/// @brief Determine if this is an equals/not equals predicate.
bool isEquality();
/// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const CmpInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::ICmp ||
I->getOpcode() == Instruction::FCmp;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
} // End llvm namespace
#endif