llvm-6502/lib/Target/R600/R600ExpandSpecialInstrs.cpp

335 lines
11 KiB
C++
Raw Normal View History

//===-- R600ExpandSpecialInstrs.cpp - Expand special instructions ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Vector, Reduction, and Cube instructions need to fill the entire instruction
/// group to work correctly. This pass expands these individual instructions
/// into several instructions that will completely fill the instruction group.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "R600Defines.h"
#include "R600InstrInfo.h"
#include "R600RegisterInfo.h"
#include "R600MachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
namespace {
class R600ExpandSpecialInstrsPass : public MachineFunctionPass {
private:
static char ID;
const R600InstrInfo *TII;
bool ExpandInputPerspective(MachineInstr& MI);
bool ExpandInputConstant(MachineInstr& MI);
public:
R600ExpandSpecialInstrsPass(TargetMachine &tm) : MachineFunctionPass(ID),
TII (static_cast<const R600InstrInfo *>(tm.getInstrInfo())) { }
virtual bool runOnMachineFunction(MachineFunction &MF);
const char *getPassName() const {
return "R600 Expand special instructions pass";
}
};
} // End anonymous namespace
char R600ExpandSpecialInstrsPass::ID = 0;
FunctionPass *llvm::createR600ExpandSpecialInstrsPass(TargetMachine &TM) {
return new R600ExpandSpecialInstrsPass(TM);
}
bool R600ExpandSpecialInstrsPass::ExpandInputPerspective(MachineInstr &MI) {
const R600RegisterInfo &TRI = TII->getRegisterInfo();
if (MI.getOpcode() != AMDGPU::input_perspective)
return false;
MachineBasicBlock::iterator I = &MI;
unsigned DstReg = MI.getOperand(0).getReg();
R600MachineFunctionInfo *MFI = MI.getParent()->getParent()
->getInfo<R600MachineFunctionInfo>();
unsigned IJIndexBase;
// In Evergreen ISA doc section 8.3.2 :
// We need to interpolate XY and ZW in two different instruction groups.
// An INTERP_* must occupy all 4 slots of an instruction group.
// Output of INTERP_XY is written in X,Y slots
// Output of INTERP_ZW is written in Z,W slots
//
// Thus interpolation requires the following sequences :
//
// AnyGPR.x = INTERP_ZW; (Write Masked Out)
// AnyGPR.y = INTERP_ZW; (Write Masked Out)
// DstGPR.z = INTERP_ZW;
// DstGPR.w = INTERP_ZW; (End of first IG)
// DstGPR.x = INTERP_XY;
// DstGPR.y = INTERP_XY;
// AnyGPR.z = INTERP_XY; (Write Masked Out)
// AnyGPR.w = INTERP_XY; (Write Masked Out) (End of second IG)
//
switch (MI.getOperand(1).getImm()) {
case 0:
IJIndexBase = MFI->GetIJPerspectiveIndex();
break;
case 1:
IJIndexBase = MFI->GetIJLinearIndex();
break;
default:
assert(0 && "Unknow ij index");
}
for (unsigned i = 0; i < 8; i++) {
unsigned IJIndex = AMDGPU::R600_TReg32RegClass.getRegister(
2 * IJIndexBase + ((i + 1) % 2));
unsigned ReadReg = AMDGPU::R600_ArrayBaseRegClass.getRegister(
MI.getOperand(2).getImm());
unsigned Sel = AMDGPU::sel_x;
switch (i % 4) {
case 0:Sel = AMDGPU::sel_x;break;
case 1:Sel = AMDGPU::sel_y;break;
case 2:Sel = AMDGPU::sel_z;break;
case 3:Sel = AMDGPU::sel_w;break;
default:break;
}
unsigned Res = TRI.getSubReg(DstReg, Sel);
unsigned Opcode = (i < 4)?AMDGPU::INTERP_ZW:AMDGPU::INTERP_XY;
MachineBasicBlock &MBB = *(MI.getParent());
MachineInstr *NewMI =
TII->buildDefaultInstruction(MBB, I, Opcode, Res, IJIndex, ReadReg);
if (!(i> 1 && i < 6)) {
TII->addFlag(NewMI, 0, MO_FLAG_MASK);
}
if (i % 4 != 3)
TII->addFlag(NewMI, 0, MO_FLAG_NOT_LAST);
}
MI.eraseFromParent();
return true;
}
bool R600ExpandSpecialInstrsPass::ExpandInputConstant(MachineInstr &MI) {
const R600RegisterInfo &TRI = TII->getRegisterInfo();
if (MI.getOpcode() != AMDGPU::input_constant)
return false;
MachineBasicBlock::iterator I = &MI;
unsigned DstReg = MI.getOperand(0).getReg();
for (unsigned i = 0; i < 4; i++) {
unsigned ReadReg = AMDGPU::R600_ArrayBaseRegClass.getRegister(
MI.getOperand(1).getImm());
unsigned Sel = AMDGPU::sel_x;
switch (i % 4) {
case 0:Sel = AMDGPU::sel_x;break;
case 1:Sel = AMDGPU::sel_y;break;
case 2:Sel = AMDGPU::sel_z;break;
case 3:Sel = AMDGPU::sel_w;break;
default:break;
}
unsigned Res = TRI.getSubReg(DstReg, Sel);
MachineBasicBlock &MBB = *(MI.getParent());
MachineInstr *NewMI = TII->buildDefaultInstruction(
MBB, I, AMDGPU::INTERP_LOAD_P0, Res, ReadReg);
if (i % 4 != 3)
TII->addFlag(NewMI, 0, MO_FLAG_NOT_LAST);
}
MI.eraseFromParent();
return true;
}
bool R600ExpandSpecialInstrsPass::runOnMachineFunction(MachineFunction &MF) {
const R600RegisterInfo &TRI = TII->getRegisterInfo();
for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
BB != BB_E; ++BB) {
MachineBasicBlock &MBB = *BB;
MachineBasicBlock::iterator I = MBB.begin();
while (I != MBB.end()) {
MachineInstr &MI = *I;
I = llvm::next(I);
switch (MI.getOpcode()) {
default: break;
// Expand PRED_X to one of the PRED_SET instructions.
case AMDGPU::PRED_X: {
uint64_t Flags = MI.getOperand(3).getImm();
// The native opcode used by PRED_X is stored as an immediate in the
// third operand.
MachineInstr *PredSet = TII->buildDefaultInstruction(MBB, I,
MI.getOperand(2).getImm(), // opcode
MI.getOperand(0).getReg(), // dst
MI.getOperand(1).getReg(), // src0
AMDGPU::ZERO); // src1
TII->addFlag(PredSet, 0, MO_FLAG_MASK);
if (Flags & MO_FLAG_PUSH) {
TII->setImmOperand(PredSet, R600Operands::UPDATE_EXEC_MASK, 1);
} else {
TII->setImmOperand(PredSet, R600Operands::UPDATE_PREDICATE, 1);
}
MI.eraseFromParent();
continue;
}
case AMDGPU::BREAK:
MachineInstr *PredSet = TII->buildDefaultInstruction(MBB, I,
AMDGPU::PRED_SETE_INT,
AMDGPU::PREDICATE_BIT,
AMDGPU::ZERO,
AMDGPU::ZERO);
TII->addFlag(PredSet, 0, MO_FLAG_MASK);
TII->setImmOperand(PredSet, R600Operands::UPDATE_EXEC_MASK, 1);
BuildMI(MBB, I, MBB.findDebugLoc(I),
TII->get(AMDGPU::PREDICATED_BREAK))
.addReg(AMDGPU::PREDICATE_BIT);
MI.eraseFromParent();
continue;
}
if (ExpandInputPerspective(MI))
continue;
if (ExpandInputConstant(MI))
continue;
bool IsReduction = TII->isReductionOp(MI.getOpcode());
bool IsVector = TII->isVector(MI);
bool IsCube = TII->isCubeOp(MI.getOpcode());
if (!IsReduction && !IsVector && !IsCube) {
continue;
}
// Expand the instruction
//
// Reduction instructions:
// T0_X = DP4 T1_XYZW, T2_XYZW
// becomes:
// TO_X = DP4 T1_X, T2_X
// TO_Y (write masked) = DP4 T1_Y, T2_Y
// TO_Z (write masked) = DP4 T1_Z, T2_Z
// TO_W (write masked) = DP4 T1_W, T2_W
//
// Vector instructions:
// T0_X = MULLO_INT T1_X, T2_X
// becomes:
// T0_X = MULLO_INT T1_X, T2_X
// T0_Y (write masked) = MULLO_INT T1_X, T2_X
// T0_Z (write masked) = MULLO_INT T1_X, T2_X
// T0_W (write masked) = MULLO_INT T1_X, T2_X
//
// Cube instructions:
// T0_XYZW = CUBE T1_XYZW
// becomes:
// TO_X = CUBE T1_Z, T1_Y
// T0_Y = CUBE T1_Z, T1_X
// T0_Z = CUBE T1_X, T1_Z
// T0_W = CUBE T1_Y, T1_Z
for (unsigned Chan = 0; Chan < 4; Chan++) {
unsigned DstReg = MI.getOperand(
TII->getOperandIdx(MI, R600Operands::DST)).getReg();
unsigned Src0 = MI.getOperand(
TII->getOperandIdx(MI, R600Operands::SRC0)).getReg();
unsigned Src1 = 0;
// Determine the correct source registers
if (!IsCube) {
int Src1Idx = TII->getOperandIdx(MI, R600Operands::SRC1);
if (Src1Idx != -1) {
Src1 = MI.getOperand(Src1Idx).getReg();
}
}
if (IsReduction) {
unsigned SubRegIndex = TRI.getSubRegFromChannel(Chan);
Src0 = TRI.getSubReg(Src0, SubRegIndex);
Src1 = TRI.getSubReg(Src1, SubRegIndex);
} else if (IsCube) {
static const int CubeSrcSwz[] = {2, 2, 0, 1};
unsigned SubRegIndex0 = TRI.getSubRegFromChannel(CubeSrcSwz[Chan]);
unsigned SubRegIndex1 = TRI.getSubRegFromChannel(CubeSrcSwz[3 - Chan]);
Src1 = TRI.getSubReg(Src0, SubRegIndex1);
Src0 = TRI.getSubReg(Src0, SubRegIndex0);
}
// Determine the correct destination registers;
bool Mask = false;
bool NotLast = true;
if (IsCube) {
unsigned SubRegIndex = TRI.getSubRegFromChannel(Chan);
DstReg = TRI.getSubReg(DstReg, SubRegIndex);
} else {
// Mask the write if the original instruction does not write to
// the current Channel.
Mask = (Chan != TRI.getHWRegChan(DstReg));
unsigned DstBase = TRI.getEncodingValue(DstReg) & HW_REG_MASK;
DstReg = AMDGPU::R600_TReg32RegClass.getRegister((DstBase * 4) + Chan);
}
// Set the IsLast bit
NotLast = (Chan != 3 );
// Add the new instruction
unsigned Opcode = MI.getOpcode();
switch (Opcode) {
case AMDGPU::CUBE_r600_pseudo:
Opcode = AMDGPU::CUBE_r600_real;
break;
case AMDGPU::CUBE_eg_pseudo:
Opcode = AMDGPU::CUBE_eg_real;
break;
case AMDGPU::DOT4_r600_pseudo:
Opcode = AMDGPU::DOT4_r600_real;
break;
case AMDGPU::DOT4_eg_pseudo:
Opcode = AMDGPU::DOT4_eg_real;
break;
default:
break;
}
MachineInstr *NewMI =
TII->buildDefaultInstruction(MBB, I, Opcode, DstReg, Src0, Src1);
if (Chan != 0)
NewMI->bundleWithPred();
if (Mask) {
TII->addFlag(NewMI, 0, MO_FLAG_MASK);
}
if (NotLast) {
TII->addFlag(NewMI, 0, MO_FLAG_NOT_LAST);
}
}
MI.eraseFromParent();
}
}
return false;
}