2009-12-02 22:02:52 +00:00
|
|
|
//===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
2009-12-03 02:31:43 +00:00
|
|
|
// This file implements the MachineSSAUpdater class. It's based on SSAUpdater
|
|
|
|
// class in lib/Transforms/Utils.
|
2009-12-02 22:02:52 +00:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "llvm/CodeGen/MachineSSAUpdater.h"
|
|
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
2009-12-03 02:31:43 +00:00
|
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
2009-12-02 22:02:52 +00:00
|
|
|
#include "llvm/ADT/DenseMap.h"
|
2010-02-10 01:17:36 +00:00
|
|
|
#include "llvm/ADT/SmallVector.h"
|
2010-04-26 17:40:49 +00:00
|
|
|
#include "llvm/Support/AlignOf.h"
|
|
|
|
#include "llvm/Support/Allocator.h"
|
2009-12-03 02:31:43 +00:00
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
2009-12-02 22:02:52 +00:00
|
|
|
using namespace llvm;
|
|
|
|
|
2010-04-26 17:40:49 +00:00
|
|
|
/// BBInfo - Per-basic block information used internally by MachineSSAUpdater.
|
|
|
|
class MachineSSAUpdater::BBInfo {
|
|
|
|
public:
|
|
|
|
MachineBasicBlock *BB; // Back-pointer to the corresponding block.
|
|
|
|
unsigned AvailableVal; // Value to use in this block.
|
|
|
|
BBInfo *DefBB; // Block that defines the available value.
|
|
|
|
int BlkNum; // Postorder number.
|
|
|
|
BBInfo *IDom; // Immediate dominator.
|
|
|
|
unsigned NumPreds; // Number of predecessor blocks.
|
|
|
|
BBInfo **Preds; // Array[NumPreds] of predecessor blocks.
|
|
|
|
MachineInstr *PHITag; // Marker for existing PHIs that match.
|
|
|
|
|
|
|
|
BBInfo(MachineBasicBlock *ThisBB, unsigned V)
|
|
|
|
: BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0),
|
|
|
|
NumPreds(0), Preds(0), PHITag(0) { }
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef DenseMap<MachineBasicBlock*, MachineSSAUpdater::BBInfo*> BBMapTy;
|
2009-12-02 22:02:52 +00:00
|
|
|
|
2010-04-26 17:40:49 +00:00
|
|
|
typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy;
|
2009-12-02 22:02:52 +00:00
|
|
|
static AvailableValsTy &getAvailableVals(void *AV) {
|
|
|
|
return *static_cast<AvailableValsTy*>(AV);
|
|
|
|
}
|
|
|
|
|
2010-04-26 17:40:49 +00:00
|
|
|
static BBMapTy *getBBMap(void *BM) {
|
|
|
|
return static_cast<BBMapTy*>(BM);
|
2009-12-02 22:02:52 +00:00
|
|
|
}
|
|
|
|
|
2009-12-03 02:31:43 +00:00
|
|
|
MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
|
|
|
|
SmallVectorImpl<MachineInstr*> *NewPHI)
|
2010-04-26 17:40:49 +00:00
|
|
|
: AV(0), BM(0), InsertedPHIs(NewPHI) {
|
2009-12-03 02:31:43 +00:00
|
|
|
TII = MF.getTarget().getInstrInfo();
|
|
|
|
MRI = &MF.getRegInfo();
|
|
|
|
}
|
2009-12-02 22:02:52 +00:00
|
|
|
|
|
|
|
MachineSSAUpdater::~MachineSSAUpdater() {
|
|
|
|
delete &getAvailableVals(AV);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Initialize - Reset this object to get ready for a new set of SSA
|
|
|
|
/// updates. ProtoValue is the value used to name PHI nodes.
|
2009-12-03 02:31:43 +00:00
|
|
|
void MachineSSAUpdater::Initialize(unsigned V) {
|
2009-12-02 22:02:52 +00:00
|
|
|
if (AV == 0)
|
|
|
|
AV = new AvailableValsTy();
|
|
|
|
else
|
|
|
|
getAvailableVals(AV).clear();
|
|
|
|
|
2009-12-03 02:31:43 +00:00
|
|
|
VR = V;
|
|
|
|
VRC = MRI->getRegClass(VR);
|
2009-12-02 22:02:52 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for
|
|
|
|
/// the specified block.
|
|
|
|
bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const {
|
|
|
|
return getAvailableVals(AV).count(BB);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// AddAvailableValue - Indicate that a rewritten value is available in the
|
|
|
|
/// specified block with the specified value.
|
|
|
|
void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) {
|
|
|
|
getAvailableVals(AV)[BB] = V;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
|
|
|
|
/// live at the end of the specified block.
|
|
|
|
unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
|
|
|
|
return GetValueAtEndOfBlockInternal(BB);
|
|
|
|
}
|
|
|
|
|
2009-12-07 23:11:03 +00:00
|
|
|
static
|
|
|
|
unsigned LookForIdenticalPHI(MachineBasicBlock *BB,
|
|
|
|
SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> &PredValues) {
|
|
|
|
if (BB->empty())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
MachineBasicBlock::iterator I = BB->front();
|
2010-02-09 19:54:29 +00:00
|
|
|
if (!I->isPHI())
|
2009-12-07 23:11:03 +00:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
AvailableValsTy AVals;
|
|
|
|
for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
|
|
|
|
AVals[PredValues[i].first] = PredValues[i].second;
|
2010-02-09 19:54:29 +00:00
|
|
|
while (I != BB->end() && I->isPHI()) {
|
2009-12-07 23:11:03 +00:00
|
|
|
bool Same = true;
|
|
|
|
for (unsigned i = 1, e = I->getNumOperands(); i != e; i += 2) {
|
|
|
|
unsigned SrcReg = I->getOperand(i).getReg();
|
|
|
|
MachineBasicBlock *SrcBB = I->getOperand(i+1).getMBB();
|
|
|
|
if (AVals[SrcBB] != SrcReg) {
|
|
|
|
Same = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (Same)
|
|
|
|
return I->getOperand(0).getReg();
|
|
|
|
++I;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-12-03 21:51:55 +00:00
|
|
|
/// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define
|
|
|
|
/// a value of the given register class at the start of the specified basic
|
|
|
|
/// block. It returns the virtual register defined by the instruction.
|
2009-12-03 02:31:43 +00:00
|
|
|
static
|
2009-12-03 21:51:55 +00:00
|
|
|
MachineInstr *InsertNewDef(unsigned Opcode,
|
|
|
|
MachineBasicBlock *BB, MachineBasicBlock::iterator I,
|
|
|
|
const TargetRegisterClass *RC,
|
|
|
|
MachineRegisterInfo *MRI, const TargetInstrInfo *TII) {
|
2009-12-03 02:31:43 +00:00
|
|
|
unsigned NewVR = MRI->createVirtualRegister(RC);
|
2010-04-02 20:17:23 +00:00
|
|
|
return BuildMI(*BB, I, DebugLoc(), TII->get(Opcode), NewVR);
|
2009-12-03 02:31:43 +00:00
|
|
|
}
|
2010-04-26 17:40:49 +00:00
|
|
|
|
2009-12-02 22:02:52 +00:00
|
|
|
/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
|
|
|
|
/// is live in the middle of the specified block.
|
|
|
|
///
|
|
|
|
/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
|
|
|
|
/// important case: if there is a definition of the rewritten value after the
|
|
|
|
/// 'use' in BB. Consider code like this:
|
|
|
|
///
|
|
|
|
/// X1 = ...
|
|
|
|
/// SomeBB:
|
|
|
|
/// use(X)
|
|
|
|
/// X2 = ...
|
|
|
|
/// br Cond, SomeBB, OutBB
|
|
|
|
///
|
|
|
|
/// In this case, there are two values (X1 and X2) added to the AvailableVals
|
|
|
|
/// set by the client of the rewriter, and those values are both live out of
|
|
|
|
/// their respective blocks. However, the use of X happens in the *middle* of
|
|
|
|
/// a block. Because of this, we need to insert a new PHI node in SomeBB to
|
|
|
|
/// merge the appropriate values, and this value isn't live out of the block.
|
|
|
|
///
|
|
|
|
unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
|
2009-12-03 02:31:43 +00:00
|
|
|
// If there is no definition of the renamed variable in this block, just use
|
|
|
|
// GetValueAtEndOfBlock to do our work.
|
2010-04-26 17:40:49 +00:00
|
|
|
if (!HasValueForBlock(BB))
|
2009-12-07 23:11:03 +00:00
|
|
|
return GetValueAtEndOfBlockInternal(BB);
|
2009-12-03 02:31:43 +00:00
|
|
|
|
2009-12-03 21:51:55 +00:00
|
|
|
// If there are no predecessors, just return undef.
|
2009-12-04 09:23:37 +00:00
|
|
|
if (BB->pred_empty()) {
|
|
|
|
// Insert an implicit_def to represent an undef value.
|
2010-02-09 19:54:29 +00:00
|
|
|
MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
|
2009-12-04 09:23:37 +00:00
|
|
|
BB, BB->getFirstTerminator(),
|
|
|
|
VRC, MRI, TII);
|
|
|
|
return NewDef->getOperand(0).getReg();
|
|
|
|
}
|
2009-12-03 02:31:43 +00:00
|
|
|
|
|
|
|
// Otherwise, we have the hard case. Get the live-in values for each
|
|
|
|
// predecessor.
|
|
|
|
SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues;
|
|
|
|
unsigned SingularValue = 0;
|
|
|
|
|
|
|
|
bool isFirstPred = true;
|
|
|
|
for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
|
|
|
|
E = BB->pred_end(); PI != E; ++PI) {
|
|
|
|
MachineBasicBlock *PredBB = *PI;
|
|
|
|
unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
|
|
|
|
PredValues.push_back(std::make_pair(PredBB, PredVal));
|
|
|
|
|
|
|
|
// Compute SingularValue.
|
|
|
|
if (isFirstPred) {
|
|
|
|
SingularValue = PredVal;
|
|
|
|
isFirstPred = false;
|
|
|
|
} else if (PredVal != SingularValue)
|
|
|
|
SingularValue = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise, if all the merged values are the same, just use it.
|
|
|
|
if (SingularValue != 0)
|
|
|
|
return SingularValue;
|
|
|
|
|
2009-12-07 23:11:03 +00:00
|
|
|
// If an identical PHI is already in BB, just reuse it.
|
|
|
|
unsigned DupPHI = LookForIdenticalPHI(BB, PredValues);
|
|
|
|
if (DupPHI)
|
|
|
|
return DupPHI;
|
|
|
|
|
2009-12-03 02:31:43 +00:00
|
|
|
// Otherwise, we do need a PHI: insert one now.
|
2009-12-07 03:07:01 +00:00
|
|
|
MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
|
2010-02-09 19:54:29 +00:00
|
|
|
MachineInstr *InsertedPHI = InsertNewDef(TargetOpcode::PHI, BB,
|
2009-12-07 03:07:01 +00:00
|
|
|
Loc, VRC, MRI, TII);
|
2009-12-03 02:31:43 +00:00
|
|
|
|
|
|
|
// Fill in all the predecessors of the PHI.
|
|
|
|
MachineInstrBuilder MIB(InsertedPHI);
|
|
|
|
for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
|
|
|
|
MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first);
|
|
|
|
|
|
|
|
// See if the PHI node can be merged to a single value. This can happen in
|
|
|
|
// loop cases when we get a PHI of itself and one other value.
|
|
|
|
if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
|
|
|
|
InsertedPHI->eraseFromParent();
|
|
|
|
return ConstVal;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the client wants to know about all new instructions, tell it.
|
|
|
|
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
|
|
|
|
|
2010-01-05 00:10:05 +00:00
|
|
|
DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
|
2009-12-03 02:31:43 +00:00
|
|
|
return InsertedPHI->getOperand(0).getReg();
|
|
|
|
}
|
|
|
|
|
|
|
|
static
|
|
|
|
MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI,
|
|
|
|
MachineOperand *U) {
|
|
|
|
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
|
|
|
|
if (&MI->getOperand(i) == U)
|
|
|
|
return MI->getOperand(i+1).getMBB();
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm_unreachable("MachineOperand::getParent() failure?");
|
2009-12-02 22:02:52 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes,
|
|
|
|
/// which use their value in the corresponding predecessor.
|
2009-12-03 02:31:43 +00:00
|
|
|
void MachineSSAUpdater::RewriteUse(MachineOperand &U) {
|
|
|
|
MachineInstr *UseMI = U.getParent();
|
|
|
|
unsigned NewVR = 0;
|
2010-02-09 19:54:29 +00:00
|
|
|
if (UseMI->isPHI()) {
|
2009-12-03 02:31:43 +00:00
|
|
|
MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U);
|
2009-12-07 23:11:03 +00:00
|
|
|
NewVR = GetValueAtEndOfBlockInternal(SourceBB);
|
2009-12-04 00:09:05 +00:00
|
|
|
} else {
|
|
|
|
NewVR = GetValueInMiddleOfBlock(UseMI->getParent());
|
2009-12-03 21:51:55 +00:00
|
|
|
}
|
2009-12-04 00:09:05 +00:00
|
|
|
|
2009-12-03 02:31:43 +00:00
|
|
|
U.setReg(NewVR);
|
|
|
|
}
|
2009-12-02 22:02:52 +00:00
|
|
|
|
2009-12-07 10:15:19 +00:00
|
|
|
void MachineSSAUpdater::ReplaceRegWith(unsigned OldReg, unsigned NewReg) {
|
|
|
|
MRI->replaceRegWith(OldReg, NewReg);
|
|
|
|
|
|
|
|
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
|
|
|
for (DenseMap<MachineBasicBlock*, unsigned>::iterator
|
|
|
|
I = AvailableVals.begin(), E = AvailableVals.end(); I != E; ++I)
|
|
|
|
if (I->second == OldReg)
|
|
|
|
I->second = NewReg;
|
|
|
|
}
|
|
|
|
|
2009-12-02 22:02:52 +00:00
|
|
|
/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
|
|
|
|
/// for the specified BB and if so, return it. If not, construct SSA form by
|
2010-04-26 17:40:49 +00:00
|
|
|
/// first calculating the required placement of PHIs and then inserting new
|
|
|
|
/// PHIs where needed.
|
2009-12-02 22:02:52 +00:00
|
|
|
unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
|
2009-12-03 02:31:43 +00:00
|
|
|
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
2010-04-26 17:40:49 +00:00
|
|
|
if (unsigned V = AvailableVals[BB])
|
|
|
|
return V;
|
2009-12-03 02:31:43 +00:00
|
|
|
|
2010-04-26 17:40:49 +00:00
|
|
|
// Pool allocation used internally by GetValueAtEndOfBlock.
|
|
|
|
BumpPtrAllocator Allocator;
|
|
|
|
BBMapTy BBMapObj;
|
|
|
|
BM = &BBMapObj;
|
2009-12-03 02:31:43 +00:00
|
|
|
|
2010-04-26 17:40:49 +00:00
|
|
|
SmallVector<BBInfo*, 100> BlockList;
|
|
|
|
BuildBlockList(BB, &BlockList, &Allocator);
|
|
|
|
|
|
|
|
// Special case: bail out if BB is unreachable.
|
|
|
|
if (BlockList.size() == 0) {
|
|
|
|
BM = 0;
|
2009-12-04 09:23:37 +00:00
|
|
|
// Insert an implicit_def to represent an undef value.
|
2010-02-09 19:54:29 +00:00
|
|
|
MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
|
2009-12-04 09:23:37 +00:00
|
|
|
BB, BB->getFirstTerminator(),
|
|
|
|
VRC, MRI, TII);
|
2010-04-26 17:40:49 +00:00
|
|
|
unsigned V = NewDef->getOperand(0).getReg();
|
|
|
|
AvailableVals[BB] = V;
|
|
|
|
return V;
|
2009-12-04 09:23:37 +00:00
|
|
|
}
|
2009-12-03 02:31:43 +00:00
|
|
|
|
2010-04-26 17:40:49 +00:00
|
|
|
FindDominators(&BlockList);
|
|
|
|
FindPHIPlacement(&BlockList);
|
|
|
|
FindAvailableVals(&BlockList);
|
|
|
|
|
|
|
|
BM = 0;
|
|
|
|
return BBMapObj[BB]->DefBB->AvailableVal;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
|
|
|
|
/// vector, set Info->NumPreds, and allocate space in Info->Preds.
|
|
|
|
static void FindPredecessorBlocks(MachineSSAUpdater::BBInfo *Info,
|
|
|
|
SmallVectorImpl<MachineBasicBlock*> *Preds,
|
|
|
|
BumpPtrAllocator *Allocator) {
|
|
|
|
MachineBasicBlock *BB = Info->BB;
|
2009-12-03 02:31:43 +00:00
|
|
|
for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
|
2010-04-26 17:40:49 +00:00
|
|
|
E = BB->pred_end(); PI != E; ++PI)
|
|
|
|
Preds->push_back(*PI);
|
2009-12-03 02:31:43 +00:00
|
|
|
|
2010-04-26 17:40:49 +00:00
|
|
|
Info->NumPreds = Preds->size();
|
|
|
|
Info->Preds = static_cast<MachineSSAUpdater::BBInfo**>
|
|
|
|
(Allocator->Allocate(Info->NumPreds * sizeof(MachineSSAUpdater::BBInfo*),
|
|
|
|
AlignOf<MachineSSAUpdater::BBInfo*>::Alignment));
|
|
|
|
}
|
|
|
|
|
|
|
|
/// BuildBlockList - Starting from the specified basic block, traverse back
|
|
|
|
/// through its predecessors until reaching blocks with known values. Create
|
|
|
|
/// BBInfo structures for the blocks and append them to the block list.
|
|
|
|
void MachineSSAUpdater::BuildBlockList(MachineBasicBlock *BB,
|
|
|
|
BlockListTy *BlockList,
|
|
|
|
BumpPtrAllocator *Allocator) {
|
|
|
|
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
|
|
|
BBMapTy *BBMap = getBBMap(BM);
|
|
|
|
SmallVector<BBInfo*, 10> RootList;
|
|
|
|
SmallVector<BBInfo*, 64> WorkList;
|
|
|
|
|
|
|
|
BBInfo *Info = new (*Allocator) BBInfo(BB, 0);
|
|
|
|
(*BBMap)[BB] = Info;
|
|
|
|
WorkList.push_back(Info);
|
|
|
|
|
|
|
|
// Search backward from BB, creating BBInfos along the way and stopping when
|
|
|
|
// reaching blocks that define the value. Record those defining blocks on
|
|
|
|
// the RootList.
|
|
|
|
SmallVector<MachineBasicBlock*, 10> Preds;
|
|
|
|
while (!WorkList.empty()) {
|
|
|
|
Info = WorkList.pop_back_val();
|
|
|
|
Preds.clear();
|
|
|
|
FindPredecessorBlocks(Info, &Preds, Allocator);
|
|
|
|
|
|
|
|
// Treat an unreachable predecessor as a definition with 'undef'.
|
|
|
|
if (Info->NumPreds == 0) {
|
|
|
|
// Insert an implicit_def to represent an undef value.
|
|
|
|
MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
|
|
|
|
Info->BB,
|
|
|
|
Info->BB->getFirstTerminator(),
|
|
|
|
VRC, MRI, TII);
|
|
|
|
Info->AvailableVal = NewDef->getOperand(0).getReg();
|
|
|
|
Info->DefBB = Info;
|
|
|
|
RootList.push_back(Info);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
|
|
|
MachineBasicBlock *Pred = Preds[p];
|
|
|
|
// Check if BBMap already has a BBInfo for the predecessor block.
|
|
|
|
BBMapTy::value_type &BBMapBucket = BBMap->FindAndConstruct(Pred);
|
|
|
|
if (BBMapBucket.second) {
|
|
|
|
Info->Preds[p] = BBMapBucket.second;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create a new BBInfo for the predecessor.
|
|
|
|
unsigned PredVal = AvailableVals.lookup(Pred);
|
|
|
|
BBInfo *PredInfo = new (*Allocator) BBInfo(Pred, PredVal);
|
|
|
|
BBMapBucket.second = PredInfo;
|
|
|
|
Info->Preds[p] = PredInfo;
|
|
|
|
|
|
|
|
if (PredInfo->AvailableVal) {
|
|
|
|
RootList.push_back(PredInfo);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
WorkList.push_back(PredInfo);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now that we know what blocks are backwards-reachable from the starting
|
|
|
|
// block, do a forward depth-first traversal to assign postorder numbers
|
|
|
|
// to those blocks.
|
|
|
|
BBInfo *PseudoEntry = new (*Allocator) BBInfo(0, 0);
|
|
|
|
unsigned BlkNum = 1;
|
|
|
|
|
|
|
|
// Initialize the worklist with the roots from the backward traversal.
|
|
|
|
while (!RootList.empty()) {
|
|
|
|
Info = RootList.pop_back_val();
|
|
|
|
Info->IDom = PseudoEntry;
|
|
|
|
Info->BlkNum = -1;
|
|
|
|
WorkList.push_back(Info);
|
|
|
|
}
|
|
|
|
|
|
|
|
while (!WorkList.empty()) {
|
|
|
|
Info = WorkList.back();
|
|
|
|
|
|
|
|
if (Info->BlkNum == -2) {
|
|
|
|
// All the successors have been handled; assign the postorder number.
|
|
|
|
Info->BlkNum = BlkNum++;
|
|
|
|
// If not a root, put it on the BlockList.
|
|
|
|
if (!Info->AvailableVal)
|
|
|
|
BlockList->push_back(Info);
|
|
|
|
WorkList.pop_back();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Leave this entry on the worklist, but set its BlkNum to mark that its
|
|
|
|
// successors have been put on the worklist. When it returns to the top
|
|
|
|
// the list, after handling its successors, it will be assigned a number.
|
|
|
|
Info->BlkNum = -2;
|
|
|
|
|
|
|
|
// Add unvisited successors to the work list.
|
|
|
|
for (MachineBasicBlock::succ_iterator SI = Info->BB->succ_begin(),
|
|
|
|
E = Info->BB->succ_end(); SI != E; ++SI) {
|
|
|
|
BBInfo *SuccInfo = (*BBMap)[*SI];
|
|
|
|
if (!SuccInfo || SuccInfo->BlkNum)
|
|
|
|
continue;
|
|
|
|
SuccInfo->BlkNum = -1;
|
|
|
|
WorkList.push_back(SuccInfo);
|
|
|
|
}
|
2009-12-03 02:31:43 +00:00
|
|
|
}
|
2010-04-26 17:40:49 +00:00
|
|
|
PseudoEntry->BlkNum = BlkNum;
|
|
|
|
}
|
2009-12-03 02:31:43 +00:00
|
|
|
|
2010-04-26 17:40:49 +00:00
|
|
|
/// IntersectDominators - This is the dataflow lattice "meet" operation for
|
|
|
|
/// finding dominators. Given two basic blocks, it walks up the dominator
|
|
|
|
/// tree until it finds a common dominator of both. It uses the postorder
|
|
|
|
/// number of the blocks to determine how to do that.
|
|
|
|
static MachineSSAUpdater::BBInfo *
|
|
|
|
IntersectDominators(MachineSSAUpdater::BBInfo *Blk1,
|
|
|
|
MachineSSAUpdater::BBInfo *Blk2) {
|
|
|
|
while (Blk1 != Blk2) {
|
|
|
|
while (Blk1->BlkNum < Blk2->BlkNum) {
|
|
|
|
Blk1 = Blk1->IDom;
|
|
|
|
if (!Blk1)
|
|
|
|
return Blk2;
|
2009-12-03 02:31:43 +00:00
|
|
|
}
|
2010-04-26 17:40:49 +00:00
|
|
|
while (Blk2->BlkNum < Blk1->BlkNum) {
|
|
|
|
Blk2 = Blk2->IDom;
|
|
|
|
if (!Blk2)
|
|
|
|
return Blk1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return Blk1;
|
|
|
|
}
|
2009-12-03 02:31:43 +00:00
|
|
|
|
2010-04-26 17:40:49 +00:00
|
|
|
/// FindDominators - Calculate the dominator tree for the subset of the CFG
|
|
|
|
/// corresponding to the basic blocks on the BlockList. This uses the
|
|
|
|
/// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey and
|
|
|
|
/// Kennedy, published in Software--Practice and Experience, 2001, 4:1-10.
|
|
|
|
/// Because the CFG subset does not include any edges leading into blocks that
|
|
|
|
/// define the value, the results are not the usual dominator tree. The CFG
|
|
|
|
/// subset has a single pseudo-entry node with edges to a set of root nodes
|
|
|
|
/// for blocks that define the value. The dominators for this subset CFG are
|
|
|
|
/// not the standard dominators but they are adequate for placing PHIs within
|
|
|
|
/// the subset CFG.
|
|
|
|
void MachineSSAUpdater::FindDominators(BlockListTy *BlockList) {
|
|
|
|
bool Changed;
|
|
|
|
do {
|
|
|
|
Changed = false;
|
|
|
|
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
|
|
|
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
|
|
|
E = BlockList->rend(); I != E; ++I) {
|
|
|
|
BBInfo *Info = *I;
|
|
|
|
|
|
|
|
// Start with the first predecessor.
|
|
|
|
assert(Info->NumPreds > 0 && "unreachable block");
|
|
|
|
BBInfo *NewIDom = Info->Preds[0];
|
|
|
|
|
|
|
|
// Iterate through the block's other predecessors.
|
|
|
|
for (unsigned p = 1; p != Info->NumPreds; ++p) {
|
|
|
|
BBInfo *Pred = Info->Preds[p];
|
|
|
|
NewIDom = IntersectDominators(NewIDom, Pred);
|
|
|
|
}
|
2009-12-04 00:09:05 +00:00
|
|
|
|
2010-04-26 17:40:49 +00:00
|
|
|
// Check if the IDom value has changed.
|
|
|
|
if (NewIDom != Info->IDom) {
|
|
|
|
Info->IDom = NewIDom;
|
|
|
|
Changed = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} while (Changed);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
|
|
|
|
/// any blocks containing definitions of the value. If one is found, then the
|
|
|
|
/// successor of Pred is in the dominance frontier for the definition, and
|
|
|
|
/// this function returns true.
|
|
|
|
static bool IsDefInDomFrontier(const MachineSSAUpdater::BBInfo *Pred,
|
|
|
|
const MachineSSAUpdater::BBInfo *IDom) {
|
|
|
|
for (; Pred != IDom; Pred = Pred->IDom) {
|
|
|
|
if (Pred->DefBB == Pred)
|
|
|
|
return true;
|
2009-12-03 02:31:43 +00:00
|
|
|
}
|
2010-04-26 17:40:49 +00:00
|
|
|
return false;
|
|
|
|
}
|
2009-12-03 02:31:43 +00:00
|
|
|
|
2010-04-26 17:40:49 +00:00
|
|
|
/// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers of
|
|
|
|
/// the known definitions. Iteratively add PHIs in the dom frontiers until
|
|
|
|
/// nothing changes. Along the way, keep track of the nearest dominating
|
|
|
|
/// definitions for non-PHI blocks.
|
|
|
|
void MachineSSAUpdater::FindPHIPlacement(BlockListTy *BlockList) {
|
|
|
|
bool Changed;
|
|
|
|
do {
|
|
|
|
Changed = false;
|
|
|
|
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
|
|
|
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
|
|
|
E = BlockList->rend(); I != E; ++I) {
|
|
|
|
BBInfo *Info = *I;
|
|
|
|
|
|
|
|
// If this block already needs a PHI, there is nothing to do here.
|
|
|
|
if (Info->DefBB == Info)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Default to use the same def as the immediate dominator.
|
|
|
|
BBInfo *NewDefBB = Info->IDom->DefBB;
|
|
|
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
|
|
|
if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
|
|
|
|
// Need a PHI here.
|
|
|
|
NewDefBB = Info;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2009-12-03 02:31:43 +00:00
|
|
|
|
2010-04-26 17:40:49 +00:00
|
|
|
// Check if anything changed.
|
|
|
|
if (NewDefBB != Info->DefBB) {
|
|
|
|
Info->DefBB = NewDefBB;
|
|
|
|
Changed = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} while (Changed);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// FindAvailableVal - If this block requires a PHI, first check if an existing
|
|
|
|
/// PHI matches the PHI placement and reaching definitions computed earlier,
|
|
|
|
/// and if not, create a new PHI. Visit all the block's predecessors to
|
|
|
|
/// calculate the available value for each one and fill in the incoming values
|
|
|
|
/// for a new PHI.
|
|
|
|
void MachineSSAUpdater::FindAvailableVals(BlockListTy *BlockList) {
|
|
|
|
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
|
|
|
|
|
|
|
// Go through the worklist in forward order (i.e., backward through the CFG)
|
|
|
|
// and check if existing PHIs can be used. If not, create empty PHIs where
|
|
|
|
// they are needed.
|
|
|
|
for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end();
|
|
|
|
I != E; ++I) {
|
|
|
|
BBInfo *Info = *I;
|
|
|
|
// Check if there needs to be a PHI in BB.
|
|
|
|
if (Info->DefBB != Info)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Look for an existing PHI.
|
|
|
|
FindExistingPHI(Info->BB, BlockList);
|
|
|
|
if (Info->AvailableVal)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
MachineBasicBlock::iterator Loc =
|
|
|
|
Info->BB->empty() ? Info->BB->end() : Info->BB->front();
|
|
|
|
MachineInstr *InsertedPHI = InsertNewDef(TargetOpcode::PHI, Info->BB, Loc,
|
|
|
|
VRC, MRI, TII);
|
|
|
|
unsigned PHI = InsertedPHI->getOperand(0).getReg();
|
|
|
|
Info->AvailableVal = PHI;
|
|
|
|
AvailableVals[Info->BB] = PHI;
|
2009-12-03 02:31:43 +00:00
|
|
|
}
|
|
|
|
|
2010-04-26 17:40:49 +00:00
|
|
|
// Now go back through the worklist in reverse order to fill in the arguments
|
|
|
|
// for any new PHIs added in the forward traversal.
|
|
|
|
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
|
|
|
E = BlockList->rend(); I != E; ++I) {
|
|
|
|
BBInfo *Info = *I;
|
|
|
|
|
|
|
|
if (Info->DefBB != Info) {
|
|
|
|
// Record the available value at join nodes to speed up subsequent
|
|
|
|
// uses of this SSAUpdater for the same value.
|
|
|
|
if (Info->NumPreds > 1)
|
|
|
|
AvailableVals[Info->BB] = Info->DefBB->AvailableVal;
|
|
|
|
continue;
|
|
|
|
}
|
2009-12-03 02:31:43 +00:00
|
|
|
|
2010-04-26 17:40:49 +00:00
|
|
|
// Check if this block contains a newly added PHI.
|
|
|
|
unsigned PHI = Info->AvailableVal;
|
|
|
|
MachineInstr *InsertedPHI = MRI->getVRegDef(PHI);
|
|
|
|
if (!InsertedPHI->isPHI() || InsertedPHI->getNumOperands() > 1)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Iterate through the block's predecessors.
|
|
|
|
MachineInstrBuilder MIB(InsertedPHI);
|
|
|
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
|
|
|
BBInfo *PredInfo = Info->Preds[p];
|
|
|
|
MachineBasicBlock *Pred = PredInfo->BB;
|
|
|
|
// Skip to the nearest preceding definition.
|
|
|
|
if (PredInfo->DefBB != PredInfo)
|
|
|
|
PredInfo = PredInfo->DefBB;
|
|
|
|
MIB.addReg(PredInfo->AvailableVal).addMBB(Pred);
|
|
|
|
}
|
2009-12-03 02:31:43 +00:00
|
|
|
|
2010-01-05 00:10:05 +00:00
|
|
|
DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
|
2009-12-03 02:31:43 +00:00
|
|
|
|
|
|
|
// If the client wants to know about all new instructions, tell it.
|
|
|
|
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
|
|
|
|
}
|
2010-04-26 17:40:49 +00:00
|
|
|
}
|
2009-12-03 02:31:43 +00:00
|
|
|
|
2010-04-26 17:40:49 +00:00
|
|
|
/// FindExistingPHI - Look through the PHI nodes in a block to see if any of
|
|
|
|
/// them match what is needed.
|
|
|
|
void MachineSSAUpdater::FindExistingPHI(MachineBasicBlock *BB,
|
|
|
|
BlockListTy *BlockList) {
|
|
|
|
for (MachineBasicBlock::iterator BBI = BB->begin(), BBE = BB->end();
|
|
|
|
BBI != BBE && BBI->isPHI(); ++BBI) {
|
|
|
|
if (CheckIfPHIMatches(BBI)) {
|
|
|
|
RecordMatchingPHI(BBI);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
// Match failed: clear all the PHITag values.
|
|
|
|
for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end();
|
|
|
|
I != E; ++I)
|
|
|
|
(*I)->PHITag = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// CheckIfPHIMatches - Check if a PHI node matches the placement and values
|
|
|
|
/// in the BBMap.
|
|
|
|
bool MachineSSAUpdater::CheckIfPHIMatches(MachineInstr *PHI) {
|
|
|
|
BBMapTy *BBMap = getBBMap(BM);
|
|
|
|
SmallVector<MachineInstr*, 20> WorkList;
|
|
|
|
WorkList.push_back(PHI);
|
|
|
|
|
|
|
|
// Mark that the block containing this PHI has been visited.
|
|
|
|
(*BBMap)[PHI->getParent()]->PHITag = PHI;
|
|
|
|
|
|
|
|
while (!WorkList.empty()) {
|
|
|
|
PHI = WorkList.pop_back_val();
|
|
|
|
|
|
|
|
// Iterate through the PHI's incoming values.
|
|
|
|
for (unsigned i = 1, e = PHI->getNumOperands(); i != e; i += 2) {
|
|
|
|
unsigned IncomingVal = PHI->getOperand(i).getReg();
|
|
|
|
BBInfo *PredInfo = (*BBMap)[PHI->getOperand(i+1).getMBB()];
|
|
|
|
// Skip to the nearest preceding definition.
|
|
|
|
if (PredInfo->DefBB != PredInfo)
|
|
|
|
PredInfo = PredInfo->DefBB;
|
|
|
|
|
|
|
|
// Check if it matches the expected value.
|
|
|
|
if (PredInfo->AvailableVal) {
|
|
|
|
if (IncomingVal == PredInfo->AvailableVal)
|
|
|
|
continue;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if the value is a PHI in the correct block.
|
|
|
|
MachineInstr *IncomingPHIVal = MRI->getVRegDef(IncomingVal);
|
|
|
|
if (!IncomingPHIVal->isPHI() ||
|
|
|
|
IncomingPHIVal->getParent() != PredInfo->BB)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// If this block has already been visited, check if this PHI matches.
|
|
|
|
if (PredInfo->PHITag) {
|
|
|
|
if (IncomingPHIVal == PredInfo->PHITag)
|
|
|
|
continue;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
PredInfo->PHITag = IncomingPHIVal;
|
|
|
|
|
|
|
|
WorkList.push_back(IncomingPHIVal);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// RecordMatchingPHI - For a PHI node that matches, record it and its input
|
|
|
|
/// PHIs in both the BBMap and the AvailableVals mapping.
|
|
|
|
void MachineSSAUpdater::RecordMatchingPHI(MachineInstr *PHI) {
|
|
|
|
BBMapTy *BBMap = getBBMap(BM);
|
|
|
|
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
|
|
|
SmallVector<MachineInstr*, 20> WorkList;
|
|
|
|
WorkList.push_back(PHI);
|
|
|
|
|
|
|
|
// Record this PHI.
|
|
|
|
MachineBasicBlock *BB = PHI->getParent();
|
|
|
|
AvailableVals[BB] = PHI->getOperand(0).getReg();
|
|
|
|
(*BBMap)[BB]->AvailableVal = PHI->getOperand(0).getReg();
|
|
|
|
|
|
|
|
while (!WorkList.empty()) {
|
|
|
|
PHI = WorkList.pop_back_val();
|
|
|
|
|
|
|
|
// Iterate through the PHI's incoming values.
|
|
|
|
for (unsigned i = 1, e = PHI->getNumOperands(); i != e; i += 2) {
|
|
|
|
unsigned IncomingVal = PHI->getOperand(i).getReg();
|
|
|
|
MachineInstr *IncomingPHIVal = MRI->getVRegDef(IncomingVal);
|
|
|
|
if (!IncomingPHIVal->isPHI()) continue;
|
|
|
|
BB = IncomingPHIVal->getParent();
|
|
|
|
BBInfo *Info = (*BBMap)[BB];
|
|
|
|
if (!Info || Info->AvailableVal)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Record the PHI and add it to the worklist.
|
|
|
|
AvailableVals[BB] = IncomingVal;
|
|
|
|
Info->AvailableVal = IncomingVal;
|
|
|
|
WorkList.push_back(IncomingPHIVal);
|
|
|
|
}
|
|
|
|
}
|
2009-12-02 22:02:52 +00:00
|
|
|
}
|