llvm-6502/examples/Fibonacci/fibonacci.cpp

124 lines
4.0 KiB
C++
Raw Normal View History

//===--- examples/Fibonacci/fibonacci.cpp - An example use of the JIT -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This small program provides an example of how to build quickly a small module
// with function Fibonacci and execute it with the JIT.
//
// The goal of this snippet is to create in the memory the LLVM module
// consisting of one function as follow:
//
// int fib(int x) {
// if(x<=2) return 1;
// return fib(x-1)+fib(x-2);
// }
//
// Once we have this, we compile the module via JIT, then execute the `fib'
// function and return result to a driver, i.e. to a "host program".
//
//===----------------------------------------------------------------------===//
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/ModuleProvider.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/ExecutionEngine/JIT.h"
#include "llvm/ExecutionEngine/Interpreter.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static Function *CreateFibFunction(Module *M, LLVMContext &Context) {
// Create the fib function and insert it into module M. This function is said
// to return an int and take an int parameter.
Function *FibF =
cast<Function>(M->getOrInsertFunction("fib", Type::Int32Ty, Type::Int32Ty,
(Type *)0));
// Add a basic block to the function.
BasicBlock *BB = BasicBlock::Create("EntryBlock", FibF);
// Get pointers to the constants.
Value *One = Context.getConstantInt(Type::Int32Ty, 1);
Value *Two = Context.getConstantInt(Type::Int32Ty, 2);
// Get pointer to the integer argument of the add1 function...
Argument *ArgX = FibF->arg_begin(); // Get the arg.
ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
// Create the true_block.
BasicBlock *RetBB = BasicBlock::Create("return", FibF);
// Create an exit block.
BasicBlock* RecurseBB = BasicBlock::Create("recurse", FibF);
// Create the "if (arg <= 2) goto exitbb"
Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
// Create: ret int 1
ReturnInst::Create(One, RetBB);
// create fib(x-1)
Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
CallInst *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
CallFibX1->setTailCall();
// create fib(x-2)
Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
CallInst *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
CallFibX2->setTailCall();
// fib(x-1)+fib(x-2)
Value *Sum = BinaryOperator::CreateAdd(CallFibX1, CallFibX2,
"addresult", RecurseBB);
// Create the return instruction and add it to the basic block
ReturnInst::Create(Sum, RecurseBB);
return FibF;
}
int main(int argc, char **argv) {
int n = argc > 1 ? atol(argv[1]) : 24;
LLVMContext Context;
// Create some module to put our function into it.
Module *M = new Module("test", Context);
// We are about to create the "fib" function:
Function *FibF = CreateFibFunction(M, Context);
// Now we going to create JIT
ExecutionEngine *EE = EngineBuilder(M).create();
errs() << "verifying... ";
if (verifyModule(*M)) {
errs() << argv[0] << ": Error constructing function!\n";
return 1;
}
errs() << "OK\n";
errs() << "We just constructed this LLVM module:\n\n---------\n" << *M;
errs() << "---------\nstarting fibonacci(" << n << ") with JIT...\n";
// Call the Fibonacci function with argument n:
std::vector<GenericValue> Args(1);
Args[0].IntVal = APInt(32, n);
GenericValue GV = EE->runFunction(FibF, Args);
// import result of execution
outs() << "Result: " << GV.IntVal << "\n";
return 0;
}