llvm-6502/test/Analysis/BasicAA/zext.ll

210 lines
6.4 KiB
LLVM
Raw Normal View History

Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
; RUN: opt < %s -basicaa -aa-eval -print-all-alias-modref-info -disable-output 2>&1 | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
; CHECK-LABEL: test_with_zext
; CHECK: NoAlias: i8* %a, i8* %b
define void @test_with_zext() {
%1 = tail call i8* @malloc(i64 120)
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%a = getelementptr inbounds i8, i8* %1, i64 8
%2 = getelementptr inbounds i8, i8* %1, i64 16
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
%3 = zext i32 3 to i64
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%b = getelementptr inbounds i8, i8* %2, i64 %3
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
ret void
}
; CHECK-LABEL: test_with_lshr
; CHECK: NoAlias: i8* %a, i8* %b
define void @test_with_lshr(i64 %i) {
%1 = tail call i8* @malloc(i64 120)
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%a = getelementptr inbounds i8, i8* %1, i64 8
%2 = getelementptr inbounds i8, i8* %1, i64 16
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
%3 = lshr i64 %i, 2
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%b = getelementptr inbounds i8, i8* %2, i64 %3
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
ret void
}
; CHECK-LABEL: test_with_a_loop
; CHECK: NoAlias: i8* %a, i8* %b
define void @test_with_a_loop(i8* %mem) {
br label %for.loop
for.loop:
%i = phi i32 [ 0, %0 ], [ %i.plus1, %for.loop ]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%a = getelementptr inbounds i8, i8* %mem, i64 8
%a.plus1 = getelementptr inbounds i8, i8* %mem, i64 16
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
%i.64 = zext i32 %i to i64
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%b = getelementptr inbounds i8, i8* %a.plus1, i64 %i.64
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
%i.plus1 = add nuw nsw i32 %i, 1
%cmp = icmp eq i32 %i.plus1, 10
br i1 %cmp, label %for.loop.exit, label %for.loop
for.loop.exit:
ret void
}
; CHECK-LABEL: test_with_varying_base_pointer_in_loop
; CHECK: NoAlias: i8* %a, i8* %b
define void @test_with_varying_base_pointer_in_loop(i8* %mem.orig) {
br label %for.loop
for.loop:
%mem = phi i8* [ %mem.orig, %0 ], [ %mem.plus1, %for.loop ]
%i = phi i32 [ 0, %0 ], [ %i.plus1, %for.loop ]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%a = getelementptr inbounds i8, i8* %mem, i64 8
%a.plus1 = getelementptr inbounds i8, i8* %mem, i64 16
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
%i.64 = zext i32 %i to i64
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%b = getelementptr inbounds i8, i8* %a.plus1, i64 %i.64
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
%i.plus1 = add nuw nsw i32 %i, 1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%mem.plus1 = getelementptr inbounds i8, i8* %mem, i64 8
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
%cmp = icmp eq i32 %i.plus1, 10
br i1 %cmp, label %for.loop.exit, label %for.loop
for.loop.exit:
ret void
}
; CHECK-LABEL: test_sign_extension
; CHECK: PartialAlias: i64* %b.i64, i8* %a
define void @test_sign_extension(i32 %p) {
%1 = tail call i8* @malloc(i64 120)
%p.64 = zext i32 %p to i64
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%a = getelementptr inbounds i8, i8* %1, i64 %p.64
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
%p.minus1 = add i32 %p, -1
%p.minus1.64 = zext i32 %p.minus1 to i64
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%b.i8 = getelementptr inbounds i8, i8* %1, i64 %p.minus1.64
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
%b.i64 = bitcast i8* %b.i8 to i64*
ret void
}
; CHECK-LABEL: test_fe_tools
; CHECK: PartialAlias: i32* %a, i32* %b
define void @test_fe_tools([8 x i32]* %values) {
br label %reorder
for.loop:
%i = phi i32 [ 0, %reorder ], [ %i.next, %for.loop ]
%idxprom = zext i32 %i to i64
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%b = getelementptr inbounds [8 x i32], [8 x i32]* %values, i64 0, i64 %idxprom
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
%i.next = add nuw nsw i32 %i, 1
%1 = icmp eq i32 %i.next, 10
br i1 %1, label %for.loop.exit, label %for.loop
reorder:
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%a = getelementptr inbounds [8 x i32], [8 x i32]* %values, i64 0, i64 1
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
br label %for.loop
for.loop.exit:
ret void
}
@b = global i32 0, align 4
@d = global i32 0, align 4
; CHECK-LABEL: test_spec2006
; CHECK: PartialAlias: i32** %x, i32** %y
define void @test_spec2006() {
%h = alloca [1 x [2 x i32*]], align 16
%d.val = load i32, i32* @d, align 4
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
%d.promoted = sext i32 %d.val to i64
%1 = icmp slt i32 %d.val, 2
br i1 %1, label %.lr.ph, label %3
.lr.ph: ; preds = %0
br label %2
; <label>:2 ; preds = %.lr.ph, %2
%i = phi i32 [ %d.val, %.lr.ph ], [ %i.plus1, %2 ]
%i.promoted = sext i32 %i to i64
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%x = getelementptr inbounds [1 x [2 x i32*]], [1 x [2 x i32*]]* %h, i64 0, i64 %d.promoted, i64 %i.promoted
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
%i.plus1 = add nsw i32 %i, 1
%cmp = icmp slt i32 %i.plus1, 2
br i1 %cmp, label %2, label %3
; <label>:3 ; preds = %._crit_edge, %0
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%y = getelementptr inbounds [1 x [2 x i32*]], [1 x [2 x i32*]]* %h, i64 0, i64 0, i64 1
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
ret void
}
; CHECK-LABEL: test_modulo_analysis_easy_case
; CHECK: NoAlias: i32** %x, i32** %y
define void @test_modulo_analysis_easy_case(i64 %i) {
%h = alloca [1 x [2 x i32*]], align 16
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%x = getelementptr inbounds [1 x [2 x i32*]], [1 x [2 x i32*]]* %h, i64 0, i64 %i, i64 0
%y = getelementptr inbounds [1 x [2 x i32*]], [1 x [2 x i32*]]* %h, i64 0, i64 0, i64 1
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
ret void
}
; CHECK-LABEL: test_modulo_analysis_in_loop
; CHECK: NoAlias: i32** %x, i32** %y
define void @test_modulo_analysis_in_loop() {
%h = alloca [1 x [2 x i32*]], align 16
br label %for.loop
for.loop:
%i = phi i32 [ 0, %0 ], [ %i.plus1, %for.loop ]
%i.promoted = sext i32 %i to i64
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%x = getelementptr inbounds [1 x [2 x i32*]], [1 x [2 x i32*]]* %h, i64 0, i64 %i.promoted, i64 0
%y = getelementptr inbounds [1 x [2 x i32*]], [1 x [2 x i32*]]* %h, i64 0, i64 0, i64 1
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
%i.plus1 = add nsw i32 %i, 1
%cmp = icmp slt i32 %i.plus1, 2
br i1 %cmp, label %for.loop, label %for.loop.exit
for.loop.exit:
ret void
}
; CHECK-LABEL: test_modulo_analysis_with_global
; CHECK: PartialAlias: i32** %x, i32** %y
define void @test_modulo_analysis_with_global() {
%h = alloca [1 x [2 x i32*]], align 16
%b = load i32, i32* @b, align 4
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
%b.promoted = sext i32 %b to i64
br label %for.loop
for.loop:
%i = phi i32 [ 0, %0 ], [ %i.plus1, %for.loop ]
%i.promoted = sext i32 %i to i64
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%x = getelementptr inbounds [1 x [2 x i32*]], [1 x [2 x i32*]]* %h, i64 0, i64 %i.promoted, i64 %b.promoted
%y = getelementptr inbounds [1 x [2 x i32*]], [1 x [2 x i32*]]* %h, i64 0, i64 0, i64 1
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
%i.plus1 = add nsw i32 %i, 1
%cmp = icmp slt i32 %i.plus1, 2
br i1 %cmp, label %for.loop, label %for.loop.exit
for.loop.exit:
ret void
}
; CHECK-LABEL: test_const_eval
; CHECK: NoAlias: i8* %a, i8* %b
define void @test_const_eval(i8* %ptr, i64 %offset) {
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%a = getelementptr inbounds i8, i8* %ptr, i64 %offset
%a.dup = getelementptr inbounds i8, i8* %ptr, i64 %offset
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
%three = zext i32 3 to i64
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%b = getelementptr inbounds i8, i8* %a.dup, i64 %three
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
ret void
}
; CHECK-LABEL: test_const_eval_scaled
; CHECK: MustAlias: i8* %a, i8* %b
define void @test_const_eval_scaled(i8* %ptr) {
%three = zext i32 3 to i64
%six = mul i64 %three, 2
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
%a = getelementptr inbounds i8, i8* %ptr, i64 %six
%b = getelementptr inbounds i8, i8* %ptr, i64 6
Revert r219432 - "Revert "[BasicAA] Revert "Revert r218714 - Make better use of zext and sign information.""" Let's try this again... This reverts r219432, plus a bug fix. Description of the bug in r219432 (by Nick): The bug was using AllPositive to break out of the loop; if the loop break condition i != e is changed to i != e && AllPositive then the test_modulo_analysis_with_global test I've added will fail as the Modulo will be calculated incorrectly (as the last loop iteration is skipped, so Modulo isn't updated with its Scale). Nick also adds this comment: ComputeSignBit is safe to use in loops as it takes into account phi nodes, and the == EK_ZeroEx check is safe in loops as, no matter how the variable changes between iterations, zero-extensions will always guarantee a zero sign bit. The isValueEqualInPotentialCycles check is therefore definitely not needed as all the variable analysis holds no matter how the variables change between loop iterations. And this patch also adds another enhancement to GetLinearExpression - basically to convert ConstantInts to Offsets (see test_const_eval and test_const_eval_scaled for the situations this improves). Original commit message: This reverts r218944, which reverted r218714, plus a bug fix. Description of the bug in r218714 (by Nick): The original patch forgot to check if the Scale in VariableGEPIndex flipped the sign of the variable. The BasicAA pass iterates over the instructions in the order they appear in the function, and so BasicAliasAnalysis::aliasGEP is called with the variable it first comes across as parameter GEP1. Adding a %reorder label puts the definition of %a after %b so aliasGEP is called with %b as the first parameter and %a as the second. aliasGEP later calculates that %a == %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) - ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly conclude that %a > %b. Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug. Slightly modified by me to add an early exit from the loop and avoid unnecessary, but expensive, function calls. Original commit message: Two related things: 1. Fixes a bug when calculating the offset in GetLinearExpression. The code previously used zext to extend the offset, so negative offsets were converted to large positive ones. 2. Enhance aliasGEP to deduce that, if the difference between two GEP allocations is positive and all the variables that govern the offset are also positive (i.e. the offset is strictly after the higher base pointer), then locations that fit in the gap between the two base pointers are NoAlias. Patch by Nick White! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-13 09:16:54 +00:00
ret void
}
; Function Attrs: nounwind
declare noalias i8* @malloc(i64)