llvm-6502/test/Analysis/DependenceAnalysis/GCD.ll

743 lines
27 KiB
LLVM
Raw Normal View History

; RUN: opt < %s -analyze -basicaa -da -da-delinearize=false | FileCheck %s
; RUN: opt < %s -analyze -basicaa -da -da-delinearize | FileCheck %s -check-prefix=DELIN
; ModuleID = 'GCD.bc'
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.6.0"
;; for (long int i = 0; i < 100; i++)
;; for (long int j = 0; j < 100; j++) {
;; A[2*i - 4*j] = i;
;; *B++ = A[6*i + 8*j];
define void @gcd0(i32* %A, i32* %B) nounwind uwtable ssp {
entry:
br label %for.cond1.preheader
; CHECK: 'Dependence Analysis' for function 'gcd0'
; CHECK: da analyze - output [* *]!
; CHECK: da analyze - flow [=> *|<]!
; CHECK: da analyze - confused!
; CHECK: da analyze - input [* *]!
; CHECK: da analyze - confused!
; CHECK: da analyze - none!
; DELIN: 'Dependence Analysis' for function 'gcd0'
split delinearization pass in 3 steps To compute the dimensions of the array in a unique way, we split the delinearization analysis in three steps: - find parametric terms in all memory access functions - compute the array dimensions from the set of terms - compute the delinearized access functions for each dimension The first step is executed on all the memory access functions such that we gather all the patterns in which an array is accessed. The second step reduces all this information in a unique description of the sizes of the array. The third step is delinearizing each memory access function following the common description of the shape of the array computed in step 2. This rewrite of the delinearization pass also solves a problem we had with the previous implementation: because the previous algorithm was by induction on the structure of the SCEV, it would not correctly recognize the shape of the array when the memory access was not following the nesting of the loops: for example, see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll ; void foo(long n, long m, long o, double A[n][m][o]) { ; ; for (long i = 0; i < n; i++) ; for (long j = 0; j < m; j++) ; for (long k = 0; k < o; k++) ; A[i][k][j] = 1.0; Starting with this patch we no longer delinearize access functions that do not contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll ;; for (long int i = 0; i < 100; i++) ;; for (long int j = 0; j < 100; j++) { ;; A[2*i - 4*j] = i; ;; *B++ = A[6*i + 8*j]; these accesses will not be delinearized as the upper bound of the loops are constants, and their access functions do not contain SCEVUnknown parameters. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208232 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 18:01:20 +00:00
; DELIN: da analyze - output [* *]!
; DELIN: da analyze - flow [=> *|<]!
; DELIN: da analyze - confused!
split delinearization pass in 3 steps To compute the dimensions of the array in a unique way, we split the delinearization analysis in three steps: - find parametric terms in all memory access functions - compute the array dimensions from the set of terms - compute the delinearized access functions for each dimension The first step is executed on all the memory access functions such that we gather all the patterns in which an array is accessed. The second step reduces all this information in a unique description of the sizes of the array. The third step is delinearizing each memory access function following the common description of the shape of the array computed in step 2. This rewrite of the delinearization pass also solves a problem we had with the previous implementation: because the previous algorithm was by induction on the structure of the SCEV, it would not correctly recognize the shape of the array when the memory access was not following the nesting of the loops: for example, see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll ; void foo(long n, long m, long o, double A[n][m][o]) { ; ; for (long i = 0; i < n; i++) ; for (long j = 0; j < m; j++) ; for (long k = 0; k < o; k++) ; A[i][k][j] = 1.0; Starting with this patch we no longer delinearize access functions that do not contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll ;; for (long int i = 0; i < 100; i++) ;; for (long int j = 0; j < 100; j++) { ;; A[2*i - 4*j] = i; ;; *B++ = A[6*i + 8*j]; these accesses will not be delinearized as the upper bound of the loops are constants, and their access functions do not contain SCEVUnknown parameters. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208232 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 18:01:20 +00:00
; DELIN: da analyze - input [* *]!
; DELIN: da analyze - confused!
; DELIN: da analyze - none!
for.cond1.preheader: ; preds = %entry, %for.inc8
%B.addr.04 = phi i32* [ %B, %entry ], [ %scevgep, %for.inc8 ]
%i.03 = phi i64 [ 0, %entry ], [ %inc9, %for.inc8 ]
br label %for.body3
for.body3: ; preds = %for.cond1.preheader, %for.body3
%j.02 = phi i64 [ 0, %for.cond1.preheader ], [ %inc, %for.body3 ]
%B.addr.11 = phi i32* [ %B.addr.04, %for.cond1.preheader ], [ %incdec.ptr, %for.body3 ]
%conv = trunc i64 %i.03 to i32
%mul = shl nsw i64 %i.03, 1
%mul4 = shl nsw i64 %j.02, 2
%sub = sub nsw i64 %mul, %mul4
%arrayidx = getelementptr inbounds i32* %A, i64 %sub
store i32 %conv, i32* %arrayidx, align 4
%mul5 = mul nsw i64 %i.03, 6
%mul6 = shl nsw i64 %j.02, 3
%add = add nsw i64 %mul5, %mul6
%arrayidx7 = getelementptr inbounds i32* %A, i64 %add
%0 = load i32* %arrayidx7, align 4
%incdec.ptr = getelementptr inbounds i32* %B.addr.11, i64 1
store i32 %0, i32* %B.addr.11, align 4
%inc = add nsw i64 %j.02, 1
%exitcond = icmp ne i64 %inc, 100
br i1 %exitcond, label %for.body3, label %for.inc8
for.inc8: ; preds = %for.body3
%scevgep = getelementptr i32* %B.addr.04, i64 100
%inc9 = add nsw i64 %i.03, 1
%exitcond5 = icmp ne i64 %inc9, 100
br i1 %exitcond5, label %for.cond1.preheader, label %for.end10
for.end10: ; preds = %for.inc8
ret void
}
;; for (long int i = 0; i < 100; i++)
;; for (long int j = 0; j < 100; j++) {
;; A[2*i - 4*j] = i;
;; *B++ = A[6*i + 8*j + 1];
define void @gcd1(i32* %A, i32* %B) nounwind uwtable ssp {
entry:
br label %for.cond1.preheader
; CHECK: 'Dependence Analysis' for function 'gcd1'
; CHECK: da analyze - output [* *]!
; CHECK: da analyze - none!
; CHECK: da analyze - confused!
; CHECK: da analyze - input [* *]!
; CHECK: da analyze - confused!
; CHECK: da analyze - none!
; DELIN: 'Dependence Analysis' for function 'gcd1'
split delinearization pass in 3 steps To compute the dimensions of the array in a unique way, we split the delinearization analysis in three steps: - find parametric terms in all memory access functions - compute the array dimensions from the set of terms - compute the delinearized access functions for each dimension The first step is executed on all the memory access functions such that we gather all the patterns in which an array is accessed. The second step reduces all this information in a unique description of the sizes of the array. The third step is delinearizing each memory access function following the common description of the shape of the array computed in step 2. This rewrite of the delinearization pass also solves a problem we had with the previous implementation: because the previous algorithm was by induction on the structure of the SCEV, it would not correctly recognize the shape of the array when the memory access was not following the nesting of the loops: for example, see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll ; void foo(long n, long m, long o, double A[n][m][o]) { ; ; for (long i = 0; i < n; i++) ; for (long j = 0; j < m; j++) ; for (long k = 0; k < o; k++) ; A[i][k][j] = 1.0; Starting with this patch we no longer delinearize access functions that do not contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll ;; for (long int i = 0; i < 100; i++) ;; for (long int j = 0; j < 100; j++) { ;; A[2*i - 4*j] = i; ;; *B++ = A[6*i + 8*j]; these accesses will not be delinearized as the upper bound of the loops are constants, and their access functions do not contain SCEVUnknown parameters. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208232 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 18:01:20 +00:00
; DELIN: da analyze - output [* *]!
; DELIN: da analyze - none!
; DELIN: da analyze - confused!
split delinearization pass in 3 steps To compute the dimensions of the array in a unique way, we split the delinearization analysis in three steps: - find parametric terms in all memory access functions - compute the array dimensions from the set of terms - compute the delinearized access functions for each dimension The first step is executed on all the memory access functions such that we gather all the patterns in which an array is accessed. The second step reduces all this information in a unique description of the sizes of the array. The third step is delinearizing each memory access function following the common description of the shape of the array computed in step 2. This rewrite of the delinearization pass also solves a problem we had with the previous implementation: because the previous algorithm was by induction on the structure of the SCEV, it would not correctly recognize the shape of the array when the memory access was not following the nesting of the loops: for example, see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll ; void foo(long n, long m, long o, double A[n][m][o]) { ; ; for (long i = 0; i < n; i++) ; for (long j = 0; j < m; j++) ; for (long k = 0; k < o; k++) ; A[i][k][j] = 1.0; Starting with this patch we no longer delinearize access functions that do not contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll ;; for (long int i = 0; i < 100; i++) ;; for (long int j = 0; j < 100; j++) { ;; A[2*i - 4*j] = i; ;; *B++ = A[6*i + 8*j]; these accesses will not be delinearized as the upper bound of the loops are constants, and their access functions do not contain SCEVUnknown parameters. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208232 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 18:01:20 +00:00
; DELIN: da analyze - input [* *]!
; DELIN: da analyze - confused!
; DELIN: da analyze - none!
for.cond1.preheader: ; preds = %entry, %for.inc9
%B.addr.04 = phi i32* [ %B, %entry ], [ %scevgep, %for.inc9 ]
%i.03 = phi i64 [ 0, %entry ], [ %inc10, %for.inc9 ]
br label %for.body3
for.body3: ; preds = %for.cond1.preheader, %for.body3
%j.02 = phi i64 [ 0, %for.cond1.preheader ], [ %inc, %for.body3 ]
%B.addr.11 = phi i32* [ %B.addr.04, %for.cond1.preheader ], [ %incdec.ptr, %for.body3 ]
%conv = trunc i64 %i.03 to i32
%mul = shl nsw i64 %i.03, 1
%mul4 = shl nsw i64 %j.02, 2
%sub = sub nsw i64 %mul, %mul4
%arrayidx = getelementptr inbounds i32* %A, i64 %sub
store i32 %conv, i32* %arrayidx, align 4
%mul5 = mul nsw i64 %i.03, 6
%mul6 = shl nsw i64 %j.02, 3
%add = add nsw i64 %mul5, %mul6
%add7 = or i64 %add, 1
%arrayidx8 = getelementptr inbounds i32* %A, i64 %add7
%0 = load i32* %arrayidx8, align 4
%incdec.ptr = getelementptr inbounds i32* %B.addr.11, i64 1
store i32 %0, i32* %B.addr.11, align 4
%inc = add nsw i64 %j.02, 1
%exitcond = icmp ne i64 %inc, 100
br i1 %exitcond, label %for.body3, label %for.inc9
for.inc9: ; preds = %for.body3
%scevgep = getelementptr i32* %B.addr.04, i64 100
%inc10 = add nsw i64 %i.03, 1
%exitcond5 = icmp ne i64 %inc10, 100
br i1 %exitcond5, label %for.cond1.preheader, label %for.end11
for.end11: ; preds = %for.inc9
ret void
}
;; for (long int i = 0; i < 100; i++)
;; for (long int j = 0; j < 100; j++) {
;; A[2*i - 4*j + 1] = i;
;; *B++ = A[6*i + 8*j];
define void @gcd2(i32* %A, i32* %B) nounwind uwtable ssp {
entry:
br label %for.cond1.preheader
; CHECK: 'Dependence Analysis' for function 'gcd2'
; CHECK: da analyze - output [* *]!
; CHECK: da analyze - none!
; CHECK: da analyze - confused!
; CHECK: da analyze - input [* *]!
; CHECK: da analyze - confused!
; CHECK: da analyze - none!
; DELIN: 'Dependence Analysis' for function 'gcd2'
split delinearization pass in 3 steps To compute the dimensions of the array in a unique way, we split the delinearization analysis in three steps: - find parametric terms in all memory access functions - compute the array dimensions from the set of terms - compute the delinearized access functions for each dimension The first step is executed on all the memory access functions such that we gather all the patterns in which an array is accessed. The second step reduces all this information in a unique description of the sizes of the array. The third step is delinearizing each memory access function following the common description of the shape of the array computed in step 2. This rewrite of the delinearization pass also solves a problem we had with the previous implementation: because the previous algorithm was by induction on the structure of the SCEV, it would not correctly recognize the shape of the array when the memory access was not following the nesting of the loops: for example, see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll ; void foo(long n, long m, long o, double A[n][m][o]) { ; ; for (long i = 0; i < n; i++) ; for (long j = 0; j < m; j++) ; for (long k = 0; k < o; k++) ; A[i][k][j] = 1.0; Starting with this patch we no longer delinearize access functions that do not contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll ;; for (long int i = 0; i < 100; i++) ;; for (long int j = 0; j < 100; j++) { ;; A[2*i - 4*j] = i; ;; *B++ = A[6*i + 8*j]; these accesses will not be delinearized as the upper bound of the loops are constants, and their access functions do not contain SCEVUnknown parameters. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208232 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 18:01:20 +00:00
; DELIN: da analyze - output [* *]!
; DELIN: da analyze - none!
; DELIN: da analyze - confused!
split delinearization pass in 3 steps To compute the dimensions of the array in a unique way, we split the delinearization analysis in three steps: - find parametric terms in all memory access functions - compute the array dimensions from the set of terms - compute the delinearized access functions for each dimension The first step is executed on all the memory access functions such that we gather all the patterns in which an array is accessed. The second step reduces all this information in a unique description of the sizes of the array. The third step is delinearizing each memory access function following the common description of the shape of the array computed in step 2. This rewrite of the delinearization pass also solves a problem we had with the previous implementation: because the previous algorithm was by induction on the structure of the SCEV, it would not correctly recognize the shape of the array when the memory access was not following the nesting of the loops: for example, see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll ; void foo(long n, long m, long o, double A[n][m][o]) { ; ; for (long i = 0; i < n; i++) ; for (long j = 0; j < m; j++) ; for (long k = 0; k < o; k++) ; A[i][k][j] = 1.0; Starting with this patch we no longer delinearize access functions that do not contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll ;; for (long int i = 0; i < 100; i++) ;; for (long int j = 0; j < 100; j++) { ;; A[2*i - 4*j] = i; ;; *B++ = A[6*i + 8*j]; these accesses will not be delinearized as the upper bound of the loops are constants, and their access functions do not contain SCEVUnknown parameters. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208232 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 18:01:20 +00:00
; DELIN: da analyze - input [* *]!
; DELIN: da analyze - confused!
; DELIN: da analyze - none!
for.cond1.preheader: ; preds = %entry, %for.inc9
%B.addr.04 = phi i32* [ %B, %entry ], [ %scevgep, %for.inc9 ]
%i.03 = phi i64 [ 0, %entry ], [ %inc10, %for.inc9 ]
br label %for.body3
for.body3: ; preds = %for.cond1.preheader, %for.body3
%j.02 = phi i64 [ 0, %for.cond1.preheader ], [ %inc, %for.body3 ]
%B.addr.11 = phi i32* [ %B.addr.04, %for.cond1.preheader ], [ %incdec.ptr, %for.body3 ]
%conv = trunc i64 %i.03 to i32
%mul = shl nsw i64 %i.03, 1
%mul4 = shl nsw i64 %j.02, 2
%sub = sub nsw i64 %mul, %mul4
%add5 = or i64 %sub, 1
%arrayidx = getelementptr inbounds i32* %A, i64 %add5
store i32 %conv, i32* %arrayidx, align 4
%mul5 = mul nsw i64 %i.03, 6
%mul6 = shl nsw i64 %j.02, 3
%add7 = add nsw i64 %mul5, %mul6
%arrayidx8 = getelementptr inbounds i32* %A, i64 %add7
%0 = load i32* %arrayidx8, align 4
%incdec.ptr = getelementptr inbounds i32* %B.addr.11, i64 1
store i32 %0, i32* %B.addr.11, align 4
%inc = add nsw i64 %j.02, 1
%exitcond = icmp ne i64 %inc, 100
br i1 %exitcond, label %for.body3, label %for.inc9
for.inc9: ; preds = %for.body3
%scevgep = getelementptr i32* %B.addr.04, i64 100
%inc10 = add nsw i64 %i.03, 1
%exitcond6 = icmp ne i64 %inc10, 100
br i1 %exitcond6, label %for.cond1.preheader, label %for.end11
for.end11: ; preds = %for.inc9
ret void
}
;; for (long int i = 0; i < 100; i++)
;; for (long int j = 0; j < 100; j++) {
;; A[i + 2*j] = i;
;; *B++ = A[i + 2*j - 1];
define void @gcd3(i32* %A, i32* %B) nounwind uwtable ssp {
entry:
br label %for.cond1.preheader
; CHECK: 'Dependence Analysis' for function 'gcd3'
; CHECK: da analyze - output [* *]!
; CHECK: da analyze - flow [<> *]!
; CHECK: da analyze - confused!
; CHECK: da analyze - input [* *]!
; CHECK: da analyze - confused!
; CHECK: da analyze - none!
; DELIN: 'Dependence Analysis' for function 'gcd3'
; DELIN: da analyze - output [* *]!
; DELIN: da analyze - flow [<> *]!
; DELIN: da analyze - confused!
; DELIN: da analyze - input [* *]!
; DELIN: da analyze - confused!
; DELIN: da analyze - none!
for.cond1.preheader: ; preds = %entry, %for.inc7
%B.addr.04 = phi i32* [ %B, %entry ], [ %scevgep, %for.inc7 ]
%i.03 = phi i64 [ 0, %entry ], [ %inc8, %for.inc7 ]
br label %for.body3
for.body3: ; preds = %for.cond1.preheader, %for.body3
%j.02 = phi i64 [ 0, %for.cond1.preheader ], [ %inc, %for.body3 ]
%B.addr.11 = phi i32* [ %B.addr.04, %for.cond1.preheader ], [ %incdec.ptr, %for.body3 ]
%conv = trunc i64 %i.03 to i32
%mul = shl nsw i64 %j.02, 1
%add = add nsw i64 %i.03, %mul
%arrayidx = getelementptr inbounds i32* %A, i64 %add
store i32 %conv, i32* %arrayidx, align 4
%mul4 = shl nsw i64 %j.02, 1
%add5 = add nsw i64 %i.03, %mul4
%sub = add nsw i64 %add5, -1
%arrayidx6 = getelementptr inbounds i32* %A, i64 %sub
%0 = load i32* %arrayidx6, align 4
%incdec.ptr = getelementptr inbounds i32* %B.addr.11, i64 1
store i32 %0, i32* %B.addr.11, align 4
%inc = add nsw i64 %j.02, 1
%exitcond = icmp ne i64 %inc, 100
br i1 %exitcond, label %for.body3, label %for.inc7
for.inc7: ; preds = %for.body3
%scevgep = getelementptr i32* %B.addr.04, i64 100
%inc8 = add nsw i64 %i.03, 1
%exitcond5 = icmp ne i64 %inc8, 100
br i1 %exitcond5, label %for.cond1.preheader, label %for.end9
for.end9: ; preds = %for.inc7
ret void
}
;; for (long int i = 0; i < 100; i++)
;; for (long int j = 0; j < 100; j++) {
;; A[5*i + 10*j*M + 9*M*N] = i;
;; *B++ = A[15*i + 20*j*M - 21*N*M + 4];
define void @gcd4(i32* %A, i32* %B, i64 %M, i64 %N) nounwind uwtable ssp {
entry:
br label %for.cond1.preheader
; CHECK: 'Dependence Analysis' for function 'gcd4'
; CHECK: da analyze - output [* *]!
; CHECK: da analyze - none!
; CHECK: da analyze - confused!
; CHECK: da analyze - input [* *]!
; CHECK: da analyze - confused!
; CHECK: da analyze - none!
; DELIN: 'Dependence Analysis' for function 'gcd4'
split delinearization pass in 3 steps To compute the dimensions of the array in a unique way, we split the delinearization analysis in three steps: - find parametric terms in all memory access functions - compute the array dimensions from the set of terms - compute the delinearized access functions for each dimension The first step is executed on all the memory access functions such that we gather all the patterns in which an array is accessed. The second step reduces all this information in a unique description of the sizes of the array. The third step is delinearizing each memory access function following the common description of the shape of the array computed in step 2. This rewrite of the delinearization pass also solves a problem we had with the previous implementation: because the previous algorithm was by induction on the structure of the SCEV, it would not correctly recognize the shape of the array when the memory access was not following the nesting of the loops: for example, see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll ; void foo(long n, long m, long o, double A[n][m][o]) { ; ; for (long i = 0; i < n; i++) ; for (long j = 0; j < m; j++) ; for (long k = 0; k < o; k++) ; A[i][k][j] = 1.0; Starting with this patch we no longer delinearize access functions that do not contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll ;; for (long int i = 0; i < 100; i++) ;; for (long int j = 0; j < 100; j++) { ;; A[2*i - 4*j] = i; ;; *B++ = A[6*i + 8*j]; these accesses will not be delinearized as the upper bound of the loops are constants, and their access functions do not contain SCEVUnknown parameters. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208232 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 18:01:20 +00:00
; DELIN: da analyze - none!
; DELIN: da analyze - none!
; DELIN: da analyze - confused!
split delinearization pass in 3 steps To compute the dimensions of the array in a unique way, we split the delinearization analysis in three steps: - find parametric terms in all memory access functions - compute the array dimensions from the set of terms - compute the delinearized access functions for each dimension The first step is executed on all the memory access functions such that we gather all the patterns in which an array is accessed. The second step reduces all this information in a unique description of the sizes of the array. The third step is delinearizing each memory access function following the common description of the shape of the array computed in step 2. This rewrite of the delinearization pass also solves a problem we had with the previous implementation: because the previous algorithm was by induction on the structure of the SCEV, it would not correctly recognize the shape of the array when the memory access was not following the nesting of the loops: for example, see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll ; void foo(long n, long m, long o, double A[n][m][o]) { ; ; for (long i = 0; i < n; i++) ; for (long j = 0; j < m; j++) ; for (long k = 0; k < o; k++) ; A[i][k][j] = 1.0; Starting with this patch we no longer delinearize access functions that do not contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll ;; for (long int i = 0; i < 100; i++) ;; for (long int j = 0; j < 100; j++) { ;; A[2*i - 4*j] = i; ;; *B++ = A[6*i + 8*j]; these accesses will not be delinearized as the upper bound of the loops are constants, and their access functions do not contain SCEVUnknown parameters. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208232 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 18:01:20 +00:00
; DELIN: da analyze - none!
; DELIN: da analyze - confused!
; DELIN: da analyze - none!
for.cond1.preheader: ; preds = %entry, %for.inc17
%B.addr.04 = phi i32* [ %B, %entry ], [ %scevgep, %for.inc17 ]
%i.03 = phi i64 [ 0, %entry ], [ %inc18, %for.inc17 ]
br label %for.body3
for.body3: ; preds = %for.cond1.preheader, %for.body3
%j.02 = phi i64 [ 0, %for.cond1.preheader ], [ %inc, %for.body3 ]
%B.addr.11 = phi i32* [ %B.addr.04, %for.cond1.preheader ], [ %incdec.ptr, %for.body3 ]
%conv = trunc i64 %i.03 to i32
%mul = mul nsw i64 %i.03, 5
%mul4 = mul nsw i64 %j.02, 10
%mul5 = mul nsw i64 %mul4, %M
%add = add nsw i64 %mul, %mul5
%mul6 = mul nsw i64 %M, 9
%mul7 = mul nsw i64 %mul6, %N
%add8 = add nsw i64 %add, %mul7
%arrayidx = getelementptr inbounds i32* %A, i64 %add8
store i32 %conv, i32* %arrayidx, align 4
%mul9 = mul nsw i64 %i.03, 15
%mul10 = mul nsw i64 %j.02, 20
%mul11 = mul nsw i64 %mul10, %M
%add12 = add nsw i64 %mul9, %mul11
%mul13 = mul nsw i64 %N, 21
%mul14 = mul nsw i64 %mul13, %M
%sub = sub nsw i64 %add12, %mul14
%add15 = add nsw i64 %sub, 4
%arrayidx16 = getelementptr inbounds i32* %A, i64 %add15
%0 = load i32* %arrayidx16, align 4
%incdec.ptr = getelementptr inbounds i32* %B.addr.11, i64 1
store i32 %0, i32* %B.addr.11, align 4
%inc = add nsw i64 %j.02, 1
%exitcond = icmp ne i64 %inc, 100
br i1 %exitcond, label %for.body3, label %for.inc17
for.inc17: ; preds = %for.body3
%scevgep = getelementptr i32* %B.addr.04, i64 100
%inc18 = add nsw i64 %i.03, 1
%exitcond5 = icmp ne i64 %inc18, 100
br i1 %exitcond5, label %for.cond1.preheader, label %for.end19
for.end19: ; preds = %for.inc17
ret void
}
;; for (long int i = 0; i < 100; i++)
;; for (long int j = 0; j < 100; j++) {
;; A[5*i + 10*j*M + 9*M*N] = i;
;; *B++ = A[15*i + 20*j*M - 21*N*M + 5];
define void @gcd5(i32* %A, i32* %B, i64 %M, i64 %N) nounwind uwtable ssp {
entry:
br label %for.cond1.preheader
; CHECK: 'Dependence Analysis' for function 'gcd5'
; CHECK: da analyze - output [* *]!
; CHECK: da analyze - flow [<> *]!
; CHECK: da analyze - confused!
; CHECK: da analyze - input [* *]!
; CHECK: da analyze - confused!
; CHECK: da analyze - none!
; DELIN: 'Dependence Analysis' for function 'gcd5'
split delinearization pass in 3 steps To compute the dimensions of the array in a unique way, we split the delinearization analysis in three steps: - find parametric terms in all memory access functions - compute the array dimensions from the set of terms - compute the delinearized access functions for each dimension The first step is executed on all the memory access functions such that we gather all the patterns in which an array is accessed. The second step reduces all this information in a unique description of the sizes of the array. The third step is delinearizing each memory access function following the common description of the shape of the array computed in step 2. This rewrite of the delinearization pass also solves a problem we had with the previous implementation: because the previous algorithm was by induction on the structure of the SCEV, it would not correctly recognize the shape of the array when the memory access was not following the nesting of the loops: for example, see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll ; void foo(long n, long m, long o, double A[n][m][o]) { ; ; for (long i = 0; i < n; i++) ; for (long j = 0; j < m; j++) ; for (long k = 0; k < o; k++) ; A[i][k][j] = 1.0; Starting with this patch we no longer delinearize access functions that do not contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll ;; for (long int i = 0; i < 100; i++) ;; for (long int j = 0; j < 100; j++) { ;; A[2*i - 4*j] = i; ;; *B++ = A[6*i + 8*j]; these accesses will not be delinearized as the upper bound of the loops are constants, and their access functions do not contain SCEVUnknown parameters. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208232 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 18:01:20 +00:00
; DELIN: da analyze - none!
; DELIN: da analyze - flow [<> *]!
; DELIN: da analyze - confused!
split delinearization pass in 3 steps To compute the dimensions of the array in a unique way, we split the delinearization analysis in three steps: - find parametric terms in all memory access functions - compute the array dimensions from the set of terms - compute the delinearized access functions for each dimension The first step is executed on all the memory access functions such that we gather all the patterns in which an array is accessed. The second step reduces all this information in a unique description of the sizes of the array. The third step is delinearizing each memory access function following the common description of the shape of the array computed in step 2. This rewrite of the delinearization pass also solves a problem we had with the previous implementation: because the previous algorithm was by induction on the structure of the SCEV, it would not correctly recognize the shape of the array when the memory access was not following the nesting of the loops: for example, see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll ; void foo(long n, long m, long o, double A[n][m][o]) { ; ; for (long i = 0; i < n; i++) ; for (long j = 0; j < m; j++) ; for (long k = 0; k < o; k++) ; A[i][k][j] = 1.0; Starting with this patch we no longer delinearize access functions that do not contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll ;; for (long int i = 0; i < 100; i++) ;; for (long int j = 0; j < 100; j++) { ;; A[2*i - 4*j] = i; ;; *B++ = A[6*i + 8*j]; these accesses will not be delinearized as the upper bound of the loops are constants, and their access functions do not contain SCEVUnknown parameters. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208232 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 18:01:20 +00:00
; DELIN: da analyze - none!
; DELIN: da analyze - confused!
; DELIN: da analyze - none!
for.cond1.preheader: ; preds = %entry, %for.inc17
%B.addr.04 = phi i32* [ %B, %entry ], [ %scevgep, %for.inc17 ]
%i.03 = phi i64 [ 0, %entry ], [ %inc18, %for.inc17 ]
br label %for.body3
for.body3: ; preds = %for.cond1.preheader, %for.body3
%j.02 = phi i64 [ 0, %for.cond1.preheader ], [ %inc, %for.body3 ]
%B.addr.11 = phi i32* [ %B.addr.04, %for.cond1.preheader ], [ %incdec.ptr, %for.body3 ]
%conv = trunc i64 %i.03 to i32
%mul = mul nsw i64 %i.03, 5
%mul4 = mul nsw i64 %j.02, 10
%mul5 = mul nsw i64 %mul4, %M
%add = add nsw i64 %mul, %mul5
%mul6 = mul nsw i64 %M, 9
%mul7 = mul nsw i64 %mul6, %N
%add8 = add nsw i64 %add, %mul7
%arrayidx = getelementptr inbounds i32* %A, i64 %add8
store i32 %conv, i32* %arrayidx, align 4
%mul9 = mul nsw i64 %i.03, 15
%mul10 = mul nsw i64 %j.02, 20
%mul11 = mul nsw i64 %mul10, %M
%add12 = add nsw i64 %mul9, %mul11
%mul13 = mul nsw i64 %N, 21
%mul14 = mul nsw i64 %mul13, %M
%sub = sub nsw i64 %add12, %mul14
%add15 = add nsw i64 %sub, 5
%arrayidx16 = getelementptr inbounds i32* %A, i64 %add15
%0 = load i32* %arrayidx16, align 4
%incdec.ptr = getelementptr inbounds i32* %B.addr.11, i64 1
store i32 %0, i32* %B.addr.11, align 4
%inc = add nsw i64 %j.02, 1
%exitcond = icmp ne i64 %inc, 100
br i1 %exitcond, label %for.body3, label %for.inc17
for.inc17: ; preds = %for.body3
%scevgep = getelementptr i32* %B.addr.04, i64 100
%inc18 = add nsw i64 %i.03, 1
%exitcond5 = icmp ne i64 %inc18, 100
br i1 %exitcond5, label %for.cond1.preheader, label %for.end19
for.end19: ; preds = %for.inc17
ret void
}
;; for (long int i = 0; i < n; i++)
;; for (long int j = 0; j < n; j++) {
;; A[2*i][4*j] = i;
;; *B++ = A[8*i][6*j + 1];
define void @gcd6(i64 %n, i32* %A, i32* %B) nounwind uwtable ssp {
entry:
%cmp4 = icmp sgt i64 %n, 0
br i1 %cmp4, label %for.cond1.preheader.preheader, label %for.end12
; CHECK: 'Dependence Analysis' for function 'gcd6'
; CHECK: da analyze - output [* *]!
; CHECK: da analyze - none!
; CHECK: da analyze - confused!
; CHECK: da analyze - input [* *]!
; CHECK: da analyze - confused!
; CHECK: da analyze - output [* *]!
; DELIN: 'Dependence Analysis' for function 'gcd6'
; DELIN: da analyze - none!
split delinearization pass in 3 steps To compute the dimensions of the array in a unique way, we split the delinearization analysis in three steps: - find parametric terms in all memory access functions - compute the array dimensions from the set of terms - compute the delinearized access functions for each dimension The first step is executed on all the memory access functions such that we gather all the patterns in which an array is accessed. The second step reduces all this information in a unique description of the sizes of the array. The third step is delinearizing each memory access function following the common description of the shape of the array computed in step 2. This rewrite of the delinearization pass also solves a problem we had with the previous implementation: because the previous algorithm was by induction on the structure of the SCEV, it would not correctly recognize the shape of the array when the memory access was not following the nesting of the loops: for example, see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll ; void foo(long n, long m, long o, double A[n][m][o]) { ; ; for (long i = 0; i < n; i++) ; for (long j = 0; j < m; j++) ; for (long k = 0; k < o; k++) ; A[i][k][j] = 1.0; Starting with this patch we no longer delinearize access functions that do not contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll ;; for (long int i = 0; i < 100; i++) ;; for (long int j = 0; j < 100; j++) { ;; A[2*i - 4*j] = i; ;; *B++ = A[6*i + 8*j]; these accesses will not be delinearized as the upper bound of the loops are constants, and their access functions do not contain SCEVUnknown parameters. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208232 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 18:01:20 +00:00
; DELIN: da analyze - flow [=> =>|<]!
; DELIN: da analyze - confused!
; DELIN: da analyze - none!
; DELIN: da analyze - confused!
; DELIN: da analyze - output [* *]!
for.cond1.preheader.preheader: ; preds = %entry
br label %for.cond1.preheader
for.cond1.preheader: ; preds = %for.cond1.preheader.preheader, %for.inc10
%i.06 = phi i64 [ %inc11, %for.inc10 ], [ 0, %for.cond1.preheader.preheader ]
%B.addr.05 = phi i32* [ %B.addr.1.lcssa, %for.inc10 ], [ %B, %for.cond1.preheader.preheader ]
%cmp21 = icmp sgt i64 %n, 0
br i1 %cmp21, label %for.body3.preheader, label %for.inc10
for.body3.preheader: ; preds = %for.cond1.preheader
br label %for.body3
for.body3: ; preds = %for.body3.preheader, %for.body3
%j.03 = phi i64 [ %inc, %for.body3 ], [ 0, %for.body3.preheader ]
%B.addr.12 = phi i32* [ %incdec.ptr, %for.body3 ], [ %B.addr.05, %for.body3.preheader ]
%conv = trunc i64 %i.06 to i32
%mul = shl nsw i64 %j.03, 2
%mul4 = shl nsw i64 %i.06, 1
%0 = mul nsw i64 %mul4, %n
%arrayidx.sum = add i64 %0, %mul
%arrayidx5 = getelementptr inbounds i32* %A, i64 %arrayidx.sum
store i32 %conv, i32* %arrayidx5, align 4
%mul6 = mul nsw i64 %j.03, 6
%add7 = or i64 %mul6, 1
%mul7 = shl nsw i64 %i.06, 3
%1 = mul nsw i64 %mul7, %n
%arrayidx8.sum = add i64 %1, %add7
%arrayidx9 = getelementptr inbounds i32* %A, i64 %arrayidx8.sum
%2 = load i32* %arrayidx9, align 4
%incdec.ptr = getelementptr inbounds i32* %B.addr.12, i64 1
store i32 %2, i32* %B.addr.12, align 4
%inc = add nsw i64 %j.03, 1
%exitcond = icmp ne i64 %inc, %n
br i1 %exitcond, label %for.body3, label %for.inc10.loopexit
for.inc10.loopexit: ; preds = %for.body3
%scevgep = getelementptr i32* %B.addr.05, i64 %n
br label %for.inc10
for.inc10: ; preds = %for.inc10.loopexit, %for.cond1.preheader
%B.addr.1.lcssa = phi i32* [ %B.addr.05, %for.cond1.preheader ], [ %scevgep, %for.inc10.loopexit ]
%inc11 = add nsw i64 %i.06, 1
%exitcond8 = icmp ne i64 %inc11, %n
br i1 %exitcond8, label %for.cond1.preheader, label %for.end12.loopexit
for.end12.loopexit: ; preds = %for.inc10
br label %for.end12
for.end12: ; preds = %for.end12.loopexit, %entry
ret void
}
;; for (int i = 0; i < n; i++)
;; for (int j = 0; j < n; j++) {
;; A[2*i][4*j] = i;
;; *B++ = A[8*i][6*j + 1];
define void @gcd7(i32 %n, i32* %A, i32* %B) nounwind uwtable ssp {
entry:
%0 = zext i32 %n to i64
%cmp4 = icmp sgt i32 %n, 0
br i1 %cmp4, label %for.cond1.preheader.preheader, label %for.end15
; CHECK: 'Dependence Analysis' for function 'gcd7'
; CHECK: da analyze - output [* *]!
; CHECK: da analyze - flow [* *|<]!
; CHECK: da analyze - confused!
; CHECK: da analyze - input [* *]!
; CHECK: da analyze - confused!
; CHECK: da analyze - output [* *]!
; DELIN: 'Dependence Analysis' for function 'gcd7'
; DELIN: da analyze - output [* *]!
; DELIN: da analyze - flow [* *|<]!
; DELIN: da analyze - confused!
; DELIN: da analyze - input [* *]!
; DELIN: da analyze - confused!
; DELIN: da analyze - output [* *]!
for.cond1.preheader.preheader: ; preds = %entry
br label %for.cond1.preheader
for.cond1.preheader: ; preds = %for.cond1.preheader.preheader, %for.inc13
%indvars.iv8 = phi i64 [ 0, %for.cond1.preheader.preheader ], [ %indvars.iv.next9, %for.inc13 ]
%B.addr.05 = phi i32* [ %B.addr.1.lcssa, %for.inc13 ], [ %B, %for.cond1.preheader.preheader ]
%1 = add i32 %n, -1
%2 = zext i32 %1 to i64
%3 = add i64 %2, 1
%cmp21 = icmp sgt i32 %n, 0
br i1 %cmp21, label %for.body3.preheader, label %for.inc13
for.body3.preheader: ; preds = %for.cond1.preheader
br label %for.body3
for.body3: ; preds = %for.body3.preheader, %for.body3
%indvars.iv = phi i64 [ 0, %for.body3.preheader ], [ %indvars.iv.next, %for.body3 ]
%B.addr.12 = phi i32* [ %incdec.ptr, %for.body3 ], [ %B.addr.05, %for.body3.preheader ]
%4 = trunc i64 %indvars.iv to i32
%mul = shl nsw i32 %4, 2
%idxprom = sext i32 %mul to i64
%5 = trunc i64 %indvars.iv8 to i32
%mul4 = shl nsw i32 %5, 1
%idxprom5 = sext i32 %mul4 to i64
%6 = mul nsw i64 %idxprom5, %0
%arrayidx.sum = add i64 %6, %idxprom
%arrayidx6 = getelementptr inbounds i32* %A, i64 %arrayidx.sum
%7 = trunc i64 %indvars.iv8 to i32
store i32 %7, i32* %arrayidx6, align 4
%8 = trunc i64 %indvars.iv to i32
%mul7 = mul nsw i32 %8, 6
%add7 = or i32 %mul7, 1
%idxprom8 = sext i32 %add7 to i64
%9 = trunc i64 %indvars.iv8 to i32
%mul9 = shl nsw i32 %9, 3
%idxprom10 = sext i32 %mul9 to i64
%10 = mul nsw i64 %idxprom10, %0
%arrayidx11.sum = add i64 %10, %idxprom8
%arrayidx12 = getelementptr inbounds i32* %A, i64 %arrayidx11.sum
%11 = load i32* %arrayidx12, align 4
%incdec.ptr = getelementptr inbounds i32* %B.addr.12, i64 1
store i32 %11, i32* %B.addr.12, align 4
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp ne i32 %lftr.wideiv, %n
br i1 %exitcond, label %for.body3, label %for.inc13.loopexit
for.inc13.loopexit: ; preds = %for.body3
%scevgep = getelementptr i32* %B.addr.05, i64 %3
br label %for.inc13
for.inc13: ; preds = %for.inc13.loopexit, %for.cond1.preheader
%B.addr.1.lcssa = phi i32* [ %B.addr.05, %for.cond1.preheader ], [ %scevgep, %for.inc13.loopexit ]
%indvars.iv.next9 = add i64 %indvars.iv8, 1
%lftr.wideiv10 = trunc i64 %indvars.iv.next9 to i32
%exitcond11 = icmp ne i32 %lftr.wideiv10, %n
br i1 %exitcond11, label %for.cond1.preheader, label %for.end15.loopexit
for.end15.loopexit: ; preds = %for.inc13
br label %for.end15
for.end15: ; preds = %for.end15.loopexit, %entry
ret void
}
;; for (int i = 0; i < n; i++)
;; for (int j = 0; j < n; j++) {
;; A[n*2*i + 4*j] = i;
;; *B++ = A[n*8*i + 6*j + 1];
define void @gcd8(i32 %n, i32* %A, i32* %B) nounwind uwtable ssp {
entry:
%cmp4 = icmp sgt i32 %n, 0
br i1 %cmp4, label %for.cond1.preheader.preheader, label %for.end15
; CHECK: 'Dependence Analysis' for function 'gcd8'
; CHECK: da analyze - output [* *]!
; CHECK: da analyze - none!
; CHECK: da analyze - confused!
; CHECK: da analyze - input [* *]!
; CHECK: da analyze - confused!
; CHECK: da analyze - output [* *]!
; DELIN: 'Dependence Analysis' for function 'gcd8'
; DELIN: da analyze - output [* *]!
; DELIN: da analyze - none!
; DELIN: da analyze - confused!
; DELIN: da analyze - input [* *]!
; DELIN: da analyze - confused!
; DELIN: da analyze - output [* *]!
for.cond1.preheader.preheader: ; preds = %entry
br label %for.cond1.preheader
for.cond1.preheader: ; preds = %for.cond1.preheader.preheader, %for.inc13
%i.06 = phi i32 [ %inc14, %for.inc13 ], [ 0, %for.cond1.preheader.preheader ]
%B.addr.05 = phi i32* [ %B.addr.1.lcssa, %for.inc13 ], [ %B, %for.cond1.preheader.preheader ]
%0 = add i32 %n, -1
%1 = zext i32 %0 to i64
%2 = add i64 %1, 1
%cmp21 = icmp sgt i32 %n, 0
br i1 %cmp21, label %for.body3.preheader, label %for.inc13
for.body3.preheader: ; preds = %for.cond1.preheader
br label %for.body3
for.body3: ; preds = %for.body3.preheader, %for.body3
%indvars.iv = phi i64 [ 0, %for.body3.preheader ], [ %indvars.iv.next, %for.body3 ]
%B.addr.12 = phi i32* [ %incdec.ptr, %for.body3 ], [ %B.addr.05, %for.body3.preheader ]
%mul = shl nsw i32 %n, 1
%mul4 = mul nsw i32 %mul, %i.06
%3 = trunc i64 %indvars.iv to i32
%mul5 = shl nsw i32 %3, 2
%add = add nsw i32 %mul4, %mul5
%idxprom = sext i32 %add to i64
%arrayidx = getelementptr inbounds i32* %A, i64 %idxprom
store i32 %i.06, i32* %arrayidx, align 4
%mul6 = shl nsw i32 %n, 3
%mul7 = mul nsw i32 %mul6, %i.06
%4 = trunc i64 %indvars.iv to i32
%mul8 = mul nsw i32 %4, 6
%add9 = add nsw i32 %mul7, %mul8
%add10 = or i32 %add9, 1
%idxprom11 = sext i32 %add10 to i64
%arrayidx12 = getelementptr inbounds i32* %A, i64 %idxprom11
%5 = load i32* %arrayidx12, align 4
%incdec.ptr = getelementptr inbounds i32* %B.addr.12, i64 1
store i32 %5, i32* %B.addr.12, align 4
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp ne i32 %lftr.wideiv, %n
br i1 %exitcond, label %for.body3, label %for.inc13.loopexit
for.inc13.loopexit: ; preds = %for.body3
%scevgep = getelementptr i32* %B.addr.05, i64 %2
br label %for.inc13
for.inc13: ; preds = %for.inc13.loopexit, %for.cond1.preheader
%B.addr.1.lcssa = phi i32* [ %B.addr.05, %for.cond1.preheader ], [ %scevgep, %for.inc13.loopexit ]
%inc14 = add nsw i32 %i.06, 1
%exitcond7 = icmp ne i32 %inc14, %n
br i1 %exitcond7, label %for.cond1.preheader, label %for.end15.loopexit
for.end15.loopexit: ; preds = %for.inc13
br label %for.end15
for.end15: ; preds = %for.end15.loopexit, %entry
ret void
}
;; for (unsigned i = 0; i < n; i++)
;; for (unsigned j = 0; j < n; j++) {
;; A[2*i][4*j] = i;
;; *B++ = A[8*i][6*j + 1];
define void @gcd9(i32 %n, i32* %A, i32* %B) nounwind uwtable ssp {
entry:
%0 = zext i32 %n to i64
%cmp4 = icmp eq i32 %n, 0
br i1 %cmp4, label %for.end15, label %for.cond1.preheader.preheader
; CHECK: 'Dependence Analysis' for function 'gcd9'
; CHECK: da analyze - output [* *]!
; CHECK: da analyze - flow [* *|<]!
; CHECK: da analyze - confused!
; CHECK: da analyze - input [* *]!
; CHECK: da analyze - confused!
; CHECK: da analyze - output [* *]!
; DELIN: 'Dependence Analysis' for function 'gcd9'
; DELIN: da analyze - output [* *]!
; DELIN: da analyze - flow [* *|<]!
; DELIN: da analyze - confused!
; DELIN: da analyze - input [* *]!
; DELIN: da analyze - confused!
; DELIN: da analyze - output [* *]!
for.cond1.preheader.preheader: ; preds = %entry
br label %for.cond1.preheader
for.cond1.preheader: ; preds = %for.cond1.preheader.preheader, %for.inc13
%indvars.iv8 = phi i64 [ 0, %for.cond1.preheader.preheader ], [ %indvars.iv.next9, %for.inc13 ]
%B.addr.05 = phi i32* [ %B.addr.1.lcssa, %for.inc13 ], [ %B, %for.cond1.preheader.preheader ]
%1 = add i32 %n, -1
%2 = zext i32 %1 to i64
%3 = add i64 %2, 1
%cmp21 = icmp eq i32 %n, 0
br i1 %cmp21, label %for.inc13, label %for.body3.preheader
for.body3.preheader: ; preds = %for.cond1.preheader
br label %for.body3
for.body3: ; preds = %for.body3.preheader, %for.body3
%indvars.iv = phi i64 [ 0, %for.body3.preheader ], [ %indvars.iv.next, %for.body3 ]
%B.addr.12 = phi i32* [ %incdec.ptr, %for.body3 ], [ %B.addr.05, %for.body3.preheader ]
%4 = trunc i64 %indvars.iv to i32
%mul = shl i32 %4, 2
%idxprom = zext i32 %mul to i64
%5 = trunc i64 %indvars.iv8 to i32
%mul4 = shl i32 %5, 1
%idxprom5 = zext i32 %mul4 to i64
%6 = mul nsw i64 %idxprom5, %0
%arrayidx.sum = add i64 %6, %idxprom
%arrayidx6 = getelementptr inbounds i32* %A, i64 %arrayidx.sum
%7 = trunc i64 %indvars.iv8 to i32
store i32 %7, i32* %arrayidx6, align 4
%8 = trunc i64 %indvars.iv to i32
%mul7 = mul i32 %8, 6
%add7 = or i32 %mul7, 1
%idxprom8 = zext i32 %add7 to i64
%9 = trunc i64 %indvars.iv8 to i32
%mul9 = shl i32 %9, 3
%idxprom10 = zext i32 %mul9 to i64
%10 = mul nsw i64 %idxprom10, %0
%arrayidx11.sum = add i64 %10, %idxprom8
%arrayidx12 = getelementptr inbounds i32* %A, i64 %arrayidx11.sum
%11 = load i32* %arrayidx12, align 4
%incdec.ptr = getelementptr inbounds i32* %B.addr.12, i64 1
store i32 %11, i32* %B.addr.12, align 4
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp ne i32 %lftr.wideiv, %n
br i1 %exitcond, label %for.body3, label %for.inc13.loopexit
for.inc13.loopexit: ; preds = %for.body3
%scevgep = getelementptr i32* %B.addr.05, i64 %3
br label %for.inc13
for.inc13: ; preds = %for.inc13.loopexit, %for.cond1.preheader
%B.addr.1.lcssa = phi i32* [ %B.addr.05, %for.cond1.preheader ], [ %scevgep, %for.inc13.loopexit ]
%indvars.iv.next9 = add i64 %indvars.iv8, 1
%lftr.wideiv10 = trunc i64 %indvars.iv.next9 to i32
%exitcond11 = icmp ne i32 %lftr.wideiv10, %n
br i1 %exitcond11, label %for.cond1.preheader, label %for.end15.loopexit
for.end15.loopexit: ; preds = %for.inc13
br label %for.end15
for.end15: ; preds = %for.end15.loopexit, %entry
ret void
}