mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 15:11:24 +00:00
932 lines
29 KiB
C++
932 lines
29 KiB
C++
|
//===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// Loops should be simplified before this analysis.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#define DEBUG_TYPE "block-freq"
|
||
|
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
|
||
|
#include "llvm/ADT/APFloat.h"
|
||
|
#include "llvm/Support/raw_ostream.h"
|
||
|
#include <deque>
|
||
|
|
||
|
using namespace llvm;
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// PositiveFloat implementation.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
const int PositiveFloatBase::MaxExponent;
|
||
|
const int PositiveFloatBase::MinExponent;
|
||
|
|
||
|
static void appendDigit(std::string &Str, unsigned D) {
|
||
|
assert(D < 10);
|
||
|
Str += '0' + D % 10;
|
||
|
}
|
||
|
|
||
|
static void appendNumber(std::string &Str, uint64_t N) {
|
||
|
while (N) {
|
||
|
appendDigit(Str, N % 10);
|
||
|
N /= 10;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static bool doesRoundUp(char Digit) {
|
||
|
switch (Digit) {
|
||
|
case '5':
|
||
|
case '6':
|
||
|
case '7':
|
||
|
case '8':
|
||
|
case '9':
|
||
|
return true;
|
||
|
default:
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
|
||
|
assert(E >= PositiveFloatBase::MinExponent);
|
||
|
assert(E <= PositiveFloatBase::MaxExponent);
|
||
|
|
||
|
// Find a new E, but don't let it increase past MaxExponent.
|
||
|
int LeadingZeros = PositiveFloatBase::countLeadingZeros64(D);
|
||
|
int NewE = std::min(PositiveFloatBase::MaxExponent, E + 63 - LeadingZeros);
|
||
|
int Shift = 63 - (NewE - E);
|
||
|
assert(Shift <= LeadingZeros);
|
||
|
assert(Shift == LeadingZeros || NewE == PositiveFloatBase::MaxExponent);
|
||
|
D <<= Shift;
|
||
|
E = NewE;
|
||
|
|
||
|
// Check for a denormal.
|
||
|
unsigned AdjustedE = E + 16383;
|
||
|
if (!(D >> 63)) {
|
||
|
assert(E == PositiveFloatBase::MaxExponent);
|
||
|
AdjustedE = 0;
|
||
|
}
|
||
|
|
||
|
// Build the float and print it.
|
||
|
uint64_t RawBits[2] = {D, AdjustedE};
|
||
|
APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
|
||
|
SmallVector<char, 24> Chars;
|
||
|
Float.toString(Chars, Precision, 0);
|
||
|
return std::string(Chars.begin(), Chars.end());
|
||
|
}
|
||
|
|
||
|
static std::string stripTrailingZeros(std::string Float) {
|
||
|
size_t NonZero = Float.find_last_not_of('0');
|
||
|
assert(NonZero != std::string::npos && "no . in floating point string");
|
||
|
|
||
|
if (Float[NonZero] == '.')
|
||
|
++NonZero;
|
||
|
|
||
|
return Float.substr(0, NonZero + 1);
|
||
|
}
|
||
|
|
||
|
std::string PositiveFloatBase::toString(uint64_t D, int16_t E, int Width,
|
||
|
unsigned Precision) {
|
||
|
if (!D)
|
||
|
return "0.0";
|
||
|
|
||
|
// Canonicalize exponent and digits.
|
||
|
uint64_t Above0 = 0;
|
||
|
uint64_t Below0 = 0;
|
||
|
uint64_t Extra = 0;
|
||
|
int ExtraShift = 0;
|
||
|
if (E == 0) {
|
||
|
Above0 = D;
|
||
|
} else if (E > 0) {
|
||
|
if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
|
||
|
D <<= Shift;
|
||
|
E -= Shift;
|
||
|
|
||
|
if (!E)
|
||
|
Above0 = D;
|
||
|
}
|
||
|
} else if (E > -64) {
|
||
|
Above0 = D >> -E;
|
||
|
Below0 = D << (64 + E);
|
||
|
} else if (E > -120) {
|
||
|
Below0 = D >> (-E - 64);
|
||
|
Extra = D << (128 + E);
|
||
|
ExtraShift = -64 - E;
|
||
|
}
|
||
|
|
||
|
// Fall back on APFloat for very small and very large numbers.
|
||
|
if (!Above0 && !Below0)
|
||
|
return toStringAPFloat(D, E, Precision);
|
||
|
|
||
|
// Append the digits before the decimal.
|
||
|
std::string Str;
|
||
|
size_t DigitsOut = 0;
|
||
|
if (Above0) {
|
||
|
appendNumber(Str, Above0);
|
||
|
DigitsOut = Str.size();
|
||
|
} else
|
||
|
appendDigit(Str, 0);
|
||
|
std::reverse(Str.begin(), Str.end());
|
||
|
|
||
|
// Return early if there's nothing after the decimal.
|
||
|
if (!Below0)
|
||
|
return Str + ".0";
|
||
|
|
||
|
// Append the decimal and beyond.
|
||
|
Str += '.';
|
||
|
uint64_t Error = UINT64_C(1) << (64 - Width);
|
||
|
|
||
|
// We need to shift Below0 to the right to make space for calculating
|
||
|
// digits. Save the precision we're losing in Extra.
|
||
|
Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
|
||
|
Below0 >>= 4;
|
||
|
size_t SinceDot = 0;
|
||
|
size_t AfterDot = Str.size();
|
||
|
do {
|
||
|
if (ExtraShift) {
|
||
|
--ExtraShift;
|
||
|
Error *= 5;
|
||
|
} else
|
||
|
Error *= 10;
|
||
|
|
||
|
Below0 *= 10;
|
||
|
Extra *= 10;
|
||
|
Below0 += (Extra >> 60);
|
||
|
Extra = Extra & (UINT64_MAX >> 4);
|
||
|
appendDigit(Str, Below0 >> 60);
|
||
|
Below0 = Below0 & (UINT64_MAX >> 4);
|
||
|
if (DigitsOut || Str.back() != '0')
|
||
|
++DigitsOut;
|
||
|
++SinceDot;
|
||
|
} while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
|
||
|
(!Precision || DigitsOut <= Precision || SinceDot < 2));
|
||
|
|
||
|
// Return early for maximum precision.
|
||
|
if (!Precision || DigitsOut <= Precision)
|
||
|
return stripTrailingZeros(Str);
|
||
|
|
||
|
// Find where to truncate.
|
||
|
size_t Truncate =
|
||
|
std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
|
||
|
|
||
|
// Check if there's anything to truncate.
|
||
|
if (Truncate >= Str.size())
|
||
|
return stripTrailingZeros(Str);
|
||
|
|
||
|
bool Carry = doesRoundUp(Str[Truncate]);
|
||
|
if (!Carry)
|
||
|
return stripTrailingZeros(Str.substr(0, Truncate));
|
||
|
|
||
|
// Round with the first truncated digit.
|
||
|
for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
|
||
|
I != E; ++I) {
|
||
|
if (*I == '.')
|
||
|
continue;
|
||
|
if (*I == '9') {
|
||
|
*I = '0';
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
++*I;
|
||
|
Carry = false;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// Add "1" in front if we still need to carry.
|
||
|
return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
|
||
|
}
|
||
|
|
||
|
raw_ostream &PositiveFloatBase::print(raw_ostream &OS, uint64_t D, int16_t E,
|
||
|
int Width, unsigned Precision) {
|
||
|
return OS << toString(D, E, Width, Precision);
|
||
|
}
|
||
|
|
||
|
void PositiveFloatBase::dump(uint64_t D, int16_t E, int Width) {
|
||
|
print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
|
||
|
<< "]";
|
||
|
}
|
||
|
|
||
|
static std::pair<uint64_t, int16_t>
|
||
|
getRoundedFloat(uint64_t N, bool ShouldRound, int64_t Shift) {
|
||
|
if (ShouldRound)
|
||
|
if (!++N)
|
||
|
// Rounding caused an overflow.
|
||
|
return std::make_pair(UINT64_C(1), Shift + 64);
|
||
|
return std::make_pair(N, Shift);
|
||
|
}
|
||
|
|
||
|
std::pair<uint64_t, int16_t> PositiveFloatBase::divide64(uint64_t Dividend,
|
||
|
uint64_t Divisor) {
|
||
|
// Input should be sanitized.
|
||
|
assert(Divisor);
|
||
|
assert(Dividend);
|
||
|
|
||
|
// Minimize size of divisor.
|
||
|
int16_t Shift = 0;
|
||
|
if (int Zeros = countTrailingZeros(Divisor)) {
|
||
|
Shift -= Zeros;
|
||
|
Divisor >>= Zeros;
|
||
|
}
|
||
|
|
||
|
// Check for powers of two.
|
||
|
if (Divisor == 1)
|
||
|
return std::make_pair(Dividend, Shift);
|
||
|
|
||
|
// Maximize size of dividend.
|
||
|
if (int Zeros = countLeadingZeros64(Dividend)) {
|
||
|
Shift -= Zeros;
|
||
|
Dividend <<= Zeros;
|
||
|
}
|
||
|
|
||
|
// Start with the result of a divide.
|
||
|
uint64_t Quotient = Dividend / Divisor;
|
||
|
Dividend %= Divisor;
|
||
|
|
||
|
// Continue building the quotient with long division.
|
||
|
//
|
||
|
// TODO: continue with largers digits.
|
||
|
while (!(Quotient >> 63) && Dividend) {
|
||
|
// Shift Dividend, and check for overflow.
|
||
|
bool IsOverflow = Dividend >> 63;
|
||
|
Dividend <<= 1;
|
||
|
--Shift;
|
||
|
|
||
|
// Divide.
|
||
|
bool DoesDivide = IsOverflow || Divisor <= Dividend;
|
||
|
Quotient = (Quotient << 1) | uint64_t(DoesDivide);
|
||
|
Dividend -= DoesDivide ? Divisor : 0;
|
||
|
}
|
||
|
|
||
|
// Round.
|
||
|
if (Dividend >= getHalf(Divisor))
|
||
|
if (!++Quotient)
|
||
|
// Rounding caused an overflow in Quotient.
|
||
|
return std::make_pair(UINT64_C(1), Shift + 64);
|
||
|
|
||
|
return getRoundedFloat(Quotient, Dividend >= getHalf(Divisor), Shift);
|
||
|
}
|
||
|
|
||
|
static void addWithCarry(uint64_t &Upper, uint64_t &Lower, uint64_t N) {
|
||
|
uint64_t NewLower = Lower + (N << 32);
|
||
|
Upper += (N >> 32) + (NewLower < Lower);
|
||
|
Lower = NewLower;
|
||
|
}
|
||
|
|
||
|
std::pair<uint64_t, int16_t> PositiveFloatBase::multiply64(uint64_t L,
|
||
|
uint64_t R) {
|
||
|
// Separate into two 32-bit digits (U.L).
|
||
|
uint64_t UL = L >> 32, LL = L & UINT32_MAX, UR = R >> 32, LR = R & UINT32_MAX;
|
||
|
|
||
|
// Compute cross products.
|
||
|
uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
|
||
|
|
||
|
// Sum into two 64-bit digits.
|
||
|
uint64_t Upper = P1, Lower = P4;
|
||
|
addWithCarry(Upper, Lower, P2);
|
||
|
addWithCarry(Upper, Lower, P3);
|
||
|
|
||
|
// Check for the lower 32 bits.
|
||
|
if (!Upper)
|
||
|
return std::make_pair(Lower, 0);
|
||
|
|
||
|
// Shift as little as possible to maximize precision.
|
||
|
unsigned LeadingZeros = countLeadingZeros64(Upper);
|
||
|
int16_t Shift = 64 - LeadingZeros;
|
||
|
if (LeadingZeros)
|
||
|
Upper = Upper << LeadingZeros | Lower >> Shift;
|
||
|
bool ShouldRound = Shift && (Lower & UINT64_C(1) << (Shift - 1));
|
||
|
return getRoundedFloat(Upper, ShouldRound, Shift);
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// BlockMass implementation.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
BlockMass &BlockMass::operator*=(const BranchProbability &P) {
|
||
|
uint32_t N = P.getNumerator(), D = P.getDenominator();
|
||
|
assert(D || "divide by 0");
|
||
|
assert(N <= D || "fraction greater than 1");
|
||
|
|
||
|
// Fast path for multiplying by 1.0.
|
||
|
if (!Mass || N == D)
|
||
|
return *this;
|
||
|
|
||
|
// Get as much precision as we can.
|
||
|
int Shift = countLeadingZeros(Mass);
|
||
|
uint64_t ShiftedQuotient = (Mass << Shift) / D;
|
||
|
uint64_t Product = ShiftedQuotient * N >> Shift;
|
||
|
|
||
|
// Now check for what's lost.
|
||
|
uint64_t Left = ShiftedQuotient * (D - N) >> Shift;
|
||
|
uint64_t Lost = Mass - Product - Left;
|
||
|
|
||
|
// TODO: prove this assertion.
|
||
|
assert(Lost <= UINT32_MAX);
|
||
|
|
||
|
// Take the product plus a portion of the spoils.
|
||
|
Mass = Product + Lost * N / D;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
PositiveFloat<uint64_t> BlockMass::toFloat() const {
|
||
|
if (isFull())
|
||
|
return PositiveFloat<uint64_t>(1, 0);
|
||
|
return PositiveFloat<uint64_t>(getMass() + 1, -64);
|
||
|
}
|
||
|
|
||
|
void BlockMass::dump() const { print(dbgs()); }
|
||
|
|
||
|
static char getHexDigit(int N) {
|
||
|
assert(N < 16);
|
||
|
if (N < 10)
|
||
|
return '0' + N;
|
||
|
return 'a' + N - 10;
|
||
|
}
|
||
|
raw_ostream &BlockMass::print(raw_ostream &OS) const {
|
||
|
for (int Digits = 0; Digits < 16; ++Digits)
|
||
|
OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
|
||
|
return OS;
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// BlockFrequencyInfoImpl implementation.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
namespace {
|
||
|
|
||
|
typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
|
||
|
typedef BlockFrequencyInfoImplBase::Distribution Distribution;
|
||
|
typedef BlockFrequencyInfoImplBase::Distribution::WeightList WeightList;
|
||
|
typedef BlockFrequencyInfoImplBase::Float Float;
|
||
|
typedef BlockFrequencyInfoImplBase::PackagedLoopData PackagedLoopData;
|
||
|
typedef BlockFrequencyInfoImplBase::Weight Weight;
|
||
|
typedef BlockFrequencyInfoImplBase::FrequencyData FrequencyData;
|
||
|
|
||
|
/// \brief Dithering mass distributer.
|
||
|
///
|
||
|
/// This class splits up a single mass into portions by weight, dithering to
|
||
|
/// spread out error. No mass is lost. The dithering precision depends on the
|
||
|
/// precision of the product of \a BlockMass and \a BranchProbability.
|
||
|
///
|
||
|
/// The distribution algorithm follows.
|
||
|
///
|
||
|
/// 1. Initialize by saving the sum of the weights in \a RemWeight and the
|
||
|
/// mass to distribute in \a RemMass.
|
||
|
///
|
||
|
/// 2. For each portion:
|
||
|
///
|
||
|
/// 1. Construct a branch probability, P, as the portion's weight divided
|
||
|
/// by the current value of \a RemWeight.
|
||
|
/// 2. Calculate the portion's mass as \a RemMass times P.
|
||
|
/// 3. Update \a RemWeight and \a RemMass at each portion by subtracting
|
||
|
/// the current portion's weight and mass.
|
||
|
///
|
||
|
/// Mass is distributed in two ways: full distribution and forward
|
||
|
/// distribution. The latter ignores backedges, and uses the parallel fields
|
||
|
/// \a RemForwardWeight and \a RemForwardMass.
|
||
|
struct DitheringDistributer {
|
||
|
uint32_t RemWeight;
|
||
|
uint32_t RemForwardWeight;
|
||
|
|
||
|
BlockMass RemMass;
|
||
|
BlockMass RemForwardMass;
|
||
|
|
||
|
DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
|
||
|
|
||
|
BlockMass takeLocalMass(uint32_t Weight) {
|
||
|
(void)takeMass(Weight);
|
||
|
return takeForwardMass(Weight);
|
||
|
}
|
||
|
BlockMass takeExitMass(uint32_t Weight) {
|
||
|
(void)takeForwardMass(Weight);
|
||
|
return takeMass(Weight);
|
||
|
}
|
||
|
BlockMass takeBackedgeMass(uint32_t Weight) { return takeMass(Weight); }
|
||
|
|
||
|
private:
|
||
|
BlockMass takeForwardMass(uint32_t Weight);
|
||
|
BlockMass takeMass(uint32_t Weight);
|
||
|
};
|
||
|
}
|
||
|
|
||
|
DitheringDistributer::DitheringDistributer(Distribution &Dist,
|
||
|
const BlockMass &Mass) {
|
||
|
Dist.normalize();
|
||
|
RemWeight = Dist.Total;
|
||
|
RemForwardWeight = Dist.ForwardTotal;
|
||
|
RemMass = Mass;
|
||
|
RemForwardMass = Dist.ForwardTotal ? Mass : BlockMass();
|
||
|
}
|
||
|
|
||
|
BlockMass DitheringDistributer::takeForwardMass(uint32_t Weight) {
|
||
|
// Compute the amount of mass to take.
|
||
|
assert(Weight && "invalid weight");
|
||
|
assert(Weight <= RemForwardWeight);
|
||
|
BlockMass Mass = RemForwardMass * BranchProbability(Weight, RemForwardWeight);
|
||
|
|
||
|
// Decrement totals (dither).
|
||
|
RemForwardWeight -= Weight;
|
||
|
RemForwardMass -= Mass;
|
||
|
return Mass;
|
||
|
}
|
||
|
BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
|
||
|
assert(Weight && "invalid weight");
|
||
|
assert(Weight <= RemWeight);
|
||
|
BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
|
||
|
|
||
|
// Decrement totals (dither).
|
||
|
RemWeight -= Weight;
|
||
|
RemMass -= Mass;
|
||
|
return Mass;
|
||
|
}
|
||
|
|
||
|
void Distribution::add(const BlockNode &Node, uint64_t Amount,
|
||
|
Weight::DistType Type) {
|
||
|
assert(Amount && "invalid weight of 0");
|
||
|
uint64_t NewTotal = Total + Amount;
|
||
|
|
||
|
// Check for overflow. It should be impossible to overflow twice.
|
||
|
bool IsOverflow = NewTotal < Total;
|
||
|
assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
|
||
|
DidOverflow |= IsOverflow;
|
||
|
|
||
|
// Update the total.
|
||
|
Total = NewTotal;
|
||
|
|
||
|
// Save the weight.
|
||
|
Weight W;
|
||
|
W.TargetNode = Node;
|
||
|
W.Amount = Amount;
|
||
|
W.Type = Type;
|
||
|
Weights.push_back(W);
|
||
|
|
||
|
if (Type == Weight::Backedge)
|
||
|
return;
|
||
|
|
||
|
// Update forward total. Don't worry about overflow here, since then Total
|
||
|
// will exceed 32-bits and they'll both be recomputed in normalize().
|
||
|
ForwardTotal += Amount;
|
||
|
}
|
||
|
|
||
|
static void combineWeight(Weight &W, const Weight &OtherW) {
|
||
|
assert(OtherW.TargetNode.isValid());
|
||
|
if (!W.Amount) {
|
||
|
W = OtherW;
|
||
|
return;
|
||
|
}
|
||
|
assert(W.Type == OtherW.Type);
|
||
|
assert(W.TargetNode == OtherW.TargetNode);
|
||
|
assert(W.Amount < W.Amount + OtherW.Amount);
|
||
|
W.Amount += OtherW.Amount;
|
||
|
}
|
||
|
static void combineWeightsBySorting(WeightList &Weights) {
|
||
|
// Sort so edges to the same node are adjacent.
|
||
|
std::sort(Weights.begin(), Weights.end(),
|
||
|
[](const Weight &L,
|
||
|
const Weight &R) { return L.TargetNode < R.TargetNode; });
|
||
|
|
||
|
// Combine adjacent edges.
|
||
|
WeightList::iterator O = Weights.begin();
|
||
|
for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
|
||
|
++O, (I = L)) {
|
||
|
*O = *I;
|
||
|
|
||
|
// Find the adjacent weights to the same node.
|
||
|
for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
|
||
|
combineWeight(*O, *L);
|
||
|
}
|
||
|
|
||
|
// Erase extra entries.
|
||
|
Weights.erase(O, Weights.end());
|
||
|
return;
|
||
|
}
|
||
|
static void combineWeightsByHashing(WeightList &Weights) {
|
||
|
// Collect weights into a DenseMap.
|
||
|
typedef DenseMap<BlockNode::IndexType, Weight> HashTable;
|
||
|
HashTable Combined(NextPowerOf2(2 * Weights.size()));
|
||
|
for (const Weight &W : Weights)
|
||
|
combineWeight(Combined[W.TargetNode.Index], W);
|
||
|
|
||
|
// Check whether anything changed.
|
||
|
if (Weights.size() == Combined.size())
|
||
|
return;
|
||
|
|
||
|
// Fill in the new weights.
|
||
|
Weights.clear();
|
||
|
Weights.reserve(Combined.size());
|
||
|
for (const auto &I : Combined)
|
||
|
Weights.push_back(I.second);
|
||
|
}
|
||
|
static void combineWeights(WeightList &Weights) {
|
||
|
// Use a hash table for many successors to keep this linear.
|
||
|
if (Weights.size() > 128) {
|
||
|
combineWeightsByHashing(Weights);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
combineWeightsBySorting(Weights);
|
||
|
}
|
||
|
static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
|
||
|
assert(Shift >= 0);
|
||
|
assert(Shift < 64);
|
||
|
if (!Shift)
|
||
|
return N;
|
||
|
return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
|
||
|
}
|
||
|
void Distribution::normalize() {
|
||
|
// Early exit for termination nodes.
|
||
|
if (Weights.empty())
|
||
|
return;
|
||
|
|
||
|
// Only bother if there are multiple successors.
|
||
|
if (Weights.size() > 1)
|
||
|
combineWeights(Weights);
|
||
|
|
||
|
// Early exit when combined into a single successor.
|
||
|
if (Weights.size() == 1) {
|
||
|
Total = 1;
|
||
|
ForwardTotal = Weights.front().Type != Weight::Backedge;
|
||
|
Weights.front().Amount = 1;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Determine how much to shift right so that the total fits into 32-bits.
|
||
|
//
|
||
|
// If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1
|
||
|
// for each weight can cause a 32-bit overflow.
|
||
|
int Shift = 0;
|
||
|
if (DidOverflow)
|
||
|
Shift = 33;
|
||
|
else if (Total > UINT32_MAX)
|
||
|
Shift = 33 - countLeadingZeros(Total);
|
||
|
|
||
|
// Early exit if nothing needs to be scaled.
|
||
|
if (!Shift)
|
||
|
return;
|
||
|
|
||
|
// Recompute the total through accumulation (rather than shifting it) so that
|
||
|
// it's accurate after shifting. ForwardTotal is dirty here anyway.
|
||
|
Total = 0;
|
||
|
ForwardTotal = 0;
|
||
|
|
||
|
// Sum the weights to each node and shift right if necessary.
|
||
|
for (Weight &W : Weights) {
|
||
|
// Scale down below UINT32_MAX. Since Shift is larger than necessary, we
|
||
|
// can round here without concern about overflow.
|
||
|
assert(W.TargetNode.isValid());
|
||
|
W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
|
||
|
assert(W.Amount <= UINT32_MAX);
|
||
|
|
||
|
// Update the total.
|
||
|
Total += W.Amount;
|
||
|
if (W.Type == Weight::Backedge)
|
||
|
continue;
|
||
|
|
||
|
// Update the forward total.
|
||
|
ForwardTotal += W.Amount;
|
||
|
}
|
||
|
assert(Total <= UINT32_MAX);
|
||
|
}
|
||
|
|
||
|
void BlockFrequencyInfoImplBase::clear() {
|
||
|
*this = BlockFrequencyInfoImplBase();
|
||
|
}
|
||
|
|
||
|
/// \brief Clear all memory not needed downstream.
|
||
|
///
|
||
|
/// Releases all memory not used downstream. In particular, saves Freqs.
|
||
|
static void cleanup(BlockFrequencyInfoImplBase &BFI) {
|
||
|
std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
|
||
|
BFI.clear();
|
||
|
BFI.Freqs = std::move(SavedFreqs);
|
||
|
}
|
||
|
|
||
|
/// \brief Get a possibly packaged node.
|
||
|
///
|
||
|
/// Get the node currently representing Node, which could be a containing
|
||
|
/// loop.
|
||
|
///
|
||
|
/// This function should only be called when distributing mass. As long as
|
||
|
/// there are no irreducilbe edges to Node, then it will have complexity O(1)
|
||
|
/// in this context.
|
||
|
///
|
||
|
/// In general, the complexity is O(L), where L is the number of loop headers
|
||
|
/// Node has been packaged into. Since this method is called in the context
|
||
|
/// of distributing mass, L will be the number of loop headers an early exit
|
||
|
/// edge jumps out of.
|
||
|
static BlockNode getPackagedNode(const BlockFrequencyInfoImplBase &BFI,
|
||
|
const BlockNode &Node) {
|
||
|
assert(Node.isValid());
|
||
|
if (!BFI.Working[Node.Index].IsPackaged)
|
||
|
return Node;
|
||
|
if (!BFI.Working[Node.Index].ContainingLoop.isValid())
|
||
|
return Node;
|
||
|
return getPackagedNode(BFI, BFI.Working[Node.Index].ContainingLoop);
|
||
|
}
|
||
|
|
||
|
/// \brief Get the appropriate mass for a possible pseudo-node loop package.
|
||
|
///
|
||
|
/// Get appropriate mass for Node. If Node is a loop-header (whose loop has
|
||
|
/// been packaged), returns the mass of its pseudo-node. If it's a node inside
|
||
|
/// a packaged loop, it returns the loop's pseudo-node.
|
||
|
static BlockMass &getPackageMass(BlockFrequencyInfoImplBase &BFI,
|
||
|
const BlockNode &Node) {
|
||
|
assert(Node.isValid());
|
||
|
assert(!BFI.Working[Node.Index].IsPackaged);
|
||
|
if (!BFI.Working[Node.Index].IsAPackage)
|
||
|
return BFI.Working[Node.Index].Mass;
|
||
|
|
||
|
return BFI.getLoopPackage(Node).Mass;
|
||
|
}
|
||
|
|
||
|
void BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
|
||
|
const BlockNode &LoopHead,
|
||
|
const BlockNode &Pred,
|
||
|
const BlockNode &Succ,
|
||
|
uint64_t Weight) {
|
||
|
if (!Weight)
|
||
|
Weight = 1;
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
auto debugSuccessor = [&](const char *Type, const BlockNode &Resolved) {
|
||
|
dbgs() << " =>"
|
||
|
<< " [" << Type << "] weight = " << Weight;
|
||
|
if (Succ != LoopHead)
|
||
|
dbgs() << ", succ = " << getBlockName(Succ);
|
||
|
if (Resolved != Succ)
|
||
|
dbgs() << ", resolved = " << getBlockName(Resolved);
|
||
|
dbgs() << "\n";
|
||
|
};
|
||
|
(void)debugSuccessor;
|
||
|
#endif
|
||
|
|
||
|
if (Succ == LoopHead) {
|
||
|
DEBUG(debugSuccessor("backedge", Succ));
|
||
|
Dist.addBackedge(LoopHead, Weight);
|
||
|
return;
|
||
|
}
|
||
|
BlockNode Resolved = getPackagedNode(*this, Succ);
|
||
|
assert(Resolved != LoopHead);
|
||
|
|
||
|
if (Working[Resolved.Index].ContainingLoop != LoopHead) {
|
||
|
DEBUG(debugSuccessor(" exit ", Resolved));
|
||
|
Dist.addExit(Resolved, Weight);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (!LoopHead.isValid() && Resolved < Pred) {
|
||
|
// Irreducible backedge. Skip this edge in the distribution.
|
||
|
DEBUG(debugSuccessor("skipped ", Resolved));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
DEBUG(debugSuccessor(" local ", Resolved));
|
||
|
Dist.addLocal(Resolved, Weight);
|
||
|
}
|
||
|
|
||
|
void BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
|
||
|
const BlockNode &LoopHead, const BlockNode &LocalLoopHead,
|
||
|
Distribution &Dist) {
|
||
|
PackagedLoopData &LoopPackage = getLoopPackage(LocalLoopHead);
|
||
|
const PackagedLoopData::ExitMap &Exits = LoopPackage.Exits;
|
||
|
|
||
|
// Copy the exit map into Dist.
|
||
|
for (const auto &I : Exits)
|
||
|
addToDist(Dist, LoopHead, LocalLoopHead, I.first, I.second.getMass());
|
||
|
|
||
|
// We don't need this map any more. Clear it to prevent quadratic memory
|
||
|
// usage in deeply nested loops with irreducible control flow.
|
||
|
LoopPackage.Exits.clear();
|
||
|
}
|
||
|
|
||
|
/// \brief Get the maximum allowed loop scale.
|
||
|
///
|
||
|
/// Gives the maximum number of estimated iterations allowed for a loop.
|
||
|
/// Downstream users have trouble with very large numbers (even within
|
||
|
/// 64-bits). Perhaps they can be changed to use PositiveFloat.
|
||
|
///
|
||
|
/// TODO: change downstream users so that this can be increased or removed.
|
||
|
static Float getMaxLoopScale() { return Float(1, 12); }
|
||
|
|
||
|
/// \brief Compute the loop scale for a loop.
|
||
|
void BlockFrequencyInfoImplBase::computeLoopScale(const BlockNode &LoopHead) {
|
||
|
// Compute loop scale.
|
||
|
DEBUG(dbgs() << "compute-loop-scale: " << getBlockName(LoopHead) << "\n");
|
||
|
|
||
|
// LoopScale == 1 / ExitMass
|
||
|
// ExitMass == HeadMass - BackedgeMass
|
||
|
PackagedLoopData &LoopPackage = getLoopPackage(LoopHead);
|
||
|
BlockMass ExitMass = BlockMass::getFull() - LoopPackage.BackedgeMass;
|
||
|
|
||
|
// Block scale stores the inverse of the scale.
|
||
|
LoopPackage.Scale = ExitMass.toFloat().inverse();
|
||
|
|
||
|
DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull()
|
||
|
<< " - " << LoopPackage.BackedgeMass << ")\n"
|
||
|
<< " - scale = " << LoopPackage.Scale << "\n");
|
||
|
|
||
|
if (LoopPackage.Scale > getMaxLoopScale()) {
|
||
|
LoopPackage.Scale = getMaxLoopScale();
|
||
|
DEBUG(dbgs() << " - reduced-to-max-scale: " << getMaxLoopScale() << "\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// \brief Package up a loop.
|
||
|
void BlockFrequencyInfoImplBase::packageLoop(const BlockNode &LoopHead) {
|
||
|
DEBUG(dbgs() << "packaging-loop: " << getBlockName(LoopHead) << "\n");
|
||
|
Working[LoopHead.Index].IsAPackage = true;
|
||
|
for (const BlockNode &M : getLoopPackage(LoopHead).Members) {
|
||
|
DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
|
||
|
Working[M.Index].IsPackaged = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
|
||
|
const BlockNode &LoopHead,
|
||
|
Distribution &Dist) {
|
||
|
BlockMass Mass = getPackageMass(*this, Source);
|
||
|
DEBUG(dbgs() << " => mass: " << Mass
|
||
|
<< " ( general | forward )\n");
|
||
|
|
||
|
// Distribute mass to successors as laid out in Dist.
|
||
|
DitheringDistributer D(Dist, Mass);
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
auto debugAssign = [&](const BlockNode &T, const BlockMass &M,
|
||
|
const char *Desc) {
|
||
|
dbgs() << " => assign " << M << " (" << D.RemMass << "|"
|
||
|
<< D.RemForwardMass << ")";
|
||
|
if (Desc)
|
||
|
dbgs() << " [" << Desc << "]";
|
||
|
if (T.isValid())
|
||
|
dbgs() << " to " << getBlockName(T);
|
||
|
dbgs() << "\n";
|
||
|
};
|
||
|
(void)debugAssign;
|
||
|
#endif
|
||
|
|
||
|
PackagedLoopData *LoopPackage = 0;
|
||
|
if (LoopHead.isValid())
|
||
|
LoopPackage = &getLoopPackage(LoopHead);
|
||
|
for (const Weight &W : Dist.Weights) {
|
||
|
// Check for a local edge (forward and non-exit).
|
||
|
if (W.Type == Weight::Local) {
|
||
|
BlockMass Local = D.takeLocalMass(W.Amount);
|
||
|
getPackageMass(*this, W.TargetNode) += Local;
|
||
|
DEBUG(debugAssign(W.TargetNode, Local, nullptr));
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Backedges and exits only make sense if we're processing a loop.
|
||
|
assert(LoopPackage && "backedge or exit outside of loop");
|
||
|
|
||
|
// Check for a backedge.
|
||
|
if (W.Type == Weight::Backedge) {
|
||
|
BlockMass Back = D.takeBackedgeMass(W.Amount);
|
||
|
LoopPackage->BackedgeMass += Back;
|
||
|
DEBUG(debugAssign(BlockNode(), Back, "back"));
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// This must be an exit.
|
||
|
assert(W.Type == Weight::Exit);
|
||
|
BlockMass Exit = D.takeExitMass(W.Amount);
|
||
|
LoopPackage->Exits.push_back(std::make_pair(W.TargetNode, Exit));
|
||
|
DEBUG(debugAssign(W.TargetNode, Exit, "exit"));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
|
||
|
const Float &Min, const Float &Max) {
|
||
|
// Scale the Factor to a size that creates integers. Ideally, integers would
|
||
|
// be scaled so that Max == UINT64_MAX so that they can be best
|
||
|
// differentiated. However, the register allocator currently deals poorly
|
||
|
// with large numbers. Instead, push Min up a little from 1 to give some
|
||
|
// room to differentiate small, unequal numbers.
|
||
|
//
|
||
|
// TODO: fix issues downstream so that ScalingFactor can be Float(1,64)/Max.
|
||
|
Float ScalingFactor = Min.inverse();
|
||
|
if ((Max / Min).lg() < 60)
|
||
|
ScalingFactor <<= 3;
|
||
|
|
||
|
// Translate the floats to integers.
|
||
|
DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
|
||
|
<< ", factor = " << ScalingFactor << "\n");
|
||
|
for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
|
||
|
Float Scaled = BFI.Freqs[Index].Floating * ScalingFactor;
|
||
|
BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
|
||
|
DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
|
||
|
<< BFI.Freqs[Index].Floating << ", scaled = " << Scaled
|
||
|
<< ", int = " << BFI.Freqs[Index].Integer << "\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void scaleBlockData(BlockFrequencyInfoImplBase &BFI,
|
||
|
const BlockNode &Node,
|
||
|
const PackagedLoopData &Loop) {
|
||
|
Float F = Loop.Mass.toFloat() * Loop.Scale;
|
||
|
|
||
|
Float &Current = BFI.Freqs[Node.Index].Floating;
|
||
|
Float Updated = Current * F;
|
||
|
|
||
|
DEBUG(dbgs() << " - " << BFI.getBlockName(Node) << ": " << Current << " => "
|
||
|
<< Updated << "\n");
|
||
|
|
||
|
Current = Updated;
|
||
|
}
|
||
|
|
||
|
/// \brief Unwrap a loop package.
|
||
|
///
|
||
|
/// Visits all the members of a loop, adjusting their BlockData according to
|
||
|
/// the loop's pseudo-node.
|
||
|
static void unwrapLoopPackage(BlockFrequencyInfoImplBase &BFI,
|
||
|
const BlockNode &Head) {
|
||
|
assert(Head.isValid());
|
||
|
|
||
|
PackagedLoopData &LoopPackage = BFI.getLoopPackage(Head);
|
||
|
DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getBlockName(Head)
|
||
|
<< ": mass = " << LoopPackage.Mass
|
||
|
<< ", scale = " << LoopPackage.Scale << "\n");
|
||
|
scaleBlockData(BFI, Head, LoopPackage);
|
||
|
|
||
|
// Propagate the head scale through the loop. Since members are visited in
|
||
|
// RPO, the head scale will be updated by the loop scale first, and then the
|
||
|
// final head scale will be used for updated the rest of the members.
|
||
|
for (const BlockNode &M : LoopPackage.Members) {
|
||
|
const FrequencyData &HeadData = BFI.Freqs[Head.Index];
|
||
|
FrequencyData &Freqs = BFI.Freqs[M.Index];
|
||
|
Float NewFreq = Freqs.Floating * HeadData.Floating;
|
||
|
DEBUG(dbgs() << " - " << BFI.getBlockName(M) << ": " << Freqs.Floating
|
||
|
<< " => " << NewFreq << "\n");
|
||
|
Freqs.Floating = NewFreq;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void BlockFrequencyInfoImplBase::finalizeMetrics() {
|
||
|
// Set initial frequencies from loop-local masses.
|
||
|
for (size_t Index = 0; Index < Working.size(); ++Index)
|
||
|
Freqs[Index].Floating = Working[Index].Mass.toFloat();
|
||
|
|
||
|
// Unwrap loop packages in reverse post-order, tracking min and max
|
||
|
// frequencies.
|
||
|
auto Min = Float::getLargest();
|
||
|
auto Max = Float::getZero();
|
||
|
for (size_t Index = 0; Index < Working.size(); ++Index) {
|
||
|
if (Working[Index].isLoopHeader())
|
||
|
unwrapLoopPackage(*this, BlockNode(Index));
|
||
|
|
||
|
// Update max scale.
|
||
|
Min = std::min(Min, Freqs[Index].Floating);
|
||
|
Max = std::max(Max, Freqs[Index].Floating);
|
||
|
}
|
||
|
|
||
|
// Convert to integers.
|
||
|
convertFloatingToInteger(*this, Min, Max);
|
||
|
|
||
|
// Clean up data structures.
|
||
|
cleanup(*this);
|
||
|
|
||
|
// Print out the final stats.
|
||
|
DEBUG(dump());
|
||
|
}
|
||
|
|
||
|
BlockFrequency
|
||
|
BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
|
||
|
if (!Node.isValid())
|
||
|
return 0;
|
||
|
return Freqs[Node.Index].Integer;
|
||
|
}
|
||
|
Float
|
||
|
BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
|
||
|
if (!Node.isValid())
|
||
|
return Float::getZero();
|
||
|
return Freqs[Node.Index].Floating;
|
||
|
}
|
||
|
|
||
|
std::string
|
||
|
BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
|
||
|
return std::string();
|
||
|
}
|
||
|
|
||
|
raw_ostream &
|
||
|
BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
|
||
|
const BlockNode &Node) const {
|
||
|
return OS << getFloatingBlockFreq(Node);
|
||
|
}
|
||
|
|
||
|
raw_ostream &
|
||
|
BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
|
||
|
const BlockFrequency &Freq) const {
|
||
|
Float Block(Freq.getFrequency(), 0);
|
||
|
Float Entry(getEntryFreq(), 0);
|
||
|
|
||
|
return OS << Block / Entry;
|
||
|
}
|