llvm-6502/lib/Target/CellSPU/SPUOperands.td

667 lines
21 KiB
TableGen
Raw Normal View History

//===- SPUOperands.td - Cell SPU Instruction Operands ------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Cell SPU Instruction Operands:
//===----------------------------------------------------------------------===//
// TO_IMM32 - Convert an i8/i16 to i32.
def TO_IMM32 : SDNodeXForm<imm, [{
return getI32Imm(N->getZExtValue());
}]>;
// TO_IMM16 - Convert an i8/i32 to i16.
def TO_IMM16 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue(), MVT::i16);
}]>;
def LO16 : SDNodeXForm<imm, [{
unsigned val = N->getZExtValue();
// Transformation function: get the low 16 bits.
return getI32Imm(val & 0xffff);
}]>;
def LO16_vec : SDNodeXForm<scalar_to_vector, [{
SDValue OpVal(0, 0);
// Transformation function: get the low 16 bit immediate from a build_vector
// node.
assert(N->getOpcode() == ISD::BUILD_VECTOR
&& "LO16_vec got something other than a BUILD_VECTOR");
// Get first constant operand...
for (unsigned i = 0, e = N->getNumOperands();
OpVal.getNode() == 0 && i != e; ++i) {
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
if (OpVal.getNode() == 0)
OpVal = N->getOperand(i);
}
assert(OpVal.getNode() != 0 && "LO16_vec did not locate a <defined> node");
ConstantSDNode *CN = cast<ConstantSDNode>(OpVal);
return getI32Imm((unsigned)CN->getZExtValue() & 0xffff);
}]>;
// Transform an immediate, returning the high 16 bits shifted down:
def HI16 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getZExtValue() >> 16);
}]>;
// Transformation function: shift the high 16 bit immediate from a build_vector
// node into the low 16 bits, and return a 16-bit constant.
def HI16_vec : SDNodeXForm<scalar_to_vector, [{
SDValue OpVal(0, 0);
assert(N->getOpcode() == ISD::BUILD_VECTOR
&& "HI16_vec got something other than a BUILD_VECTOR");
// Get first constant operand...
for (unsigned i = 0, e = N->getNumOperands();
OpVal.getNode() == 0 && i != e; ++i) {
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
if (OpVal.getNode() == 0)
OpVal = N->getOperand(i);
}
assert(OpVal.getNode() != 0 && "HI16_vec did not locate a <defined> node");
ConstantSDNode *CN = cast<ConstantSDNode>(OpVal);
return getI32Imm((unsigned)CN->getZExtValue() >> 16);
}]>;
// simm7 predicate - True if the immediate fits in an 7-bit signed
// field.
def simm7: PatLeaf<(imm), [{
int sextVal = int(N->getSExtValue());
return (sextVal >= -64 && sextVal <= 63);
}]>;
// uimm7 predicate - True if the immediate fits in an 7-bit unsigned
// field.
def uimm7: PatLeaf<(imm), [{
return (N->getZExtValue() <= 0x7f);
}]>;
// immSExt8 predicate - True if the immediate fits in an 8-bit sign extended
// field.
def immSExt8 : PatLeaf<(imm), [{
int Value = int(N->getSExtValue());
return (Value >= -(1 << 8) && Value <= (1 << 8) - 1);
}]>;
// immU8: immediate, unsigned 8-bit quantity
def immU8 : PatLeaf<(imm), [{
return (N->getZExtValue() <= 0xff);
}]>;
// i64ImmSExt10 predicate - True if the i64 immediate fits in a 10-bit sign
// extended field. Used by RI10Form instructions like 'ldq'.
def i64ImmSExt10 : PatLeaf<(imm), [{
return isI64IntS10Immediate(N);
}]>;
// i32ImmSExt10 predicate - True if the i32 immediate fits in a 10-bit sign
// extended field. Used by RI10Form instructions like 'ldq'.
def i32ImmSExt10 : PatLeaf<(imm), [{
return isI32IntS10Immediate(N);
}]>;
// i32ImmUns10 predicate - True if the i32 immediate fits in a 10-bit unsigned
// field. Used by RI10Form instructions like 'ldq'.
def i32ImmUns10 : PatLeaf<(imm), [{
return isI32IntU10Immediate(N);
}]>;
// i16ImmSExt10 predicate - True if the i16 immediate fits in a 10-bit sign
// extended field. Used by RI10Form instructions like 'ldq'.
def i16ImmSExt10 : PatLeaf<(imm), [{
return isI16IntS10Immediate(N);
}]>;
// i16ImmUns10 predicate - True if the i16 immediate fits into a 10-bit unsigned
// value. Used by RI10Form instructions.
def i16ImmUns10 : PatLeaf<(imm), [{
return isI16IntU10Immediate(N);
}]>;
def immSExt16 : PatLeaf<(imm), [{
// immSExt16 predicate - True if the immediate fits in a 16-bit sign extended
// field.
short Ignored;
return isIntS16Immediate(N, Ignored);
}]>;
def immZExt16 : PatLeaf<(imm), [{
// immZExt16 predicate - True if the immediate fits in a 16-bit zero extended
// field.
return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
}], LO16>;
def immU16 : PatLeaf<(imm), [{
// immU16 predicate- True if the immediate fits into a 16-bit unsigned field.
return (uint64_t)N->getZExtValue() == (N->getZExtValue() & 0xffff);
}]>;
def imm18 : PatLeaf<(imm), [{
// imm18 predicate: True if the immediate fits into an 18-bit unsigned field.
int Value = (int) N->getZExtValue();
return ((Value & ((1 << 19) - 1)) == Value);
}]>;
def lo16 : PatLeaf<(imm), [{
// lo16 predicate - returns true if the immediate has all zeros in the
// low order bits and is a 32-bit constant:
if (N->getValueType(0) == MVT::i32) {
uint32_t val = N->getZExtValue();
return ((val & 0x0000ffff) == val);
}
return false;
}], LO16>;
def hi16 : PatLeaf<(imm), [{
// hi16 predicate - returns true if the immediate has all zeros in the
// low order bits and is a 32-bit constant:
if (N->getValueType(0) == MVT::i32) {
uint32_t val = uint32_t(N->getZExtValue());
return ((val & 0xffff0000) == val);
} else if (N->getValueType(0) == MVT::i64) {
uint64_t val = N->getZExtValue();
return ((val & 0xffff0000ULL) == val);
}
return false;
}], HI16>;
def bitshift : PatLeaf<(imm), [{
// bitshift predicate - returns true if 0 < imm <= 7 for SHLQBII
// (shift left quadword by bits immediate)
int64_t Val = N->getZExtValue();
return (Val > 0 && Val <= 7);
}]>;
//===----------------------------------------------------------------------===//
// Floating point operands:
//===----------------------------------------------------------------------===//
// Transform a float, returning the high 16 bits shifted down, as if
// the float was really an unsigned integer:
def HI16_f32 : SDNodeXForm<fpimm, [{
float fval = N->getValueAPF().convertToFloat();
return getI32Imm(FloatToBits(fval) >> 16);
}]>;
// Transformation function on floats: get the low 16 bits as if the float was
// an unsigned integer.
def LO16_f32 : SDNodeXForm<fpimm, [{
float fval = N->getValueAPF().convertToFloat();
return getI32Imm(FloatToBits(fval) & 0xffff);
}]>;
def FPimm_sext16 : SDNodeXForm<fpimm, [{
float fval = N->getValueAPF().convertToFloat();
return getI32Imm((int) ((FloatToBits(fval) << 16) >> 16));
}]>;
def FPimm_u18 : SDNodeXForm<fpimm, [{
float fval = N->getValueAPF().convertToFloat();
return getI32Imm(FloatToBits(fval) & ((1 << 19) - 1));
}]>;
def fpimmSExt16 : PatLeaf<(fpimm), [{
short Ignored;
return isFPS16Immediate(N, Ignored);
}], FPimm_sext16>;
// Does the SFP constant only have upp 16 bits set?
def hi16_f32 : PatLeaf<(fpimm), [{
if (N->getValueType(0) == MVT::f32) {
uint32_t val = FloatToBits(N->getValueAPF().convertToFloat());
return ((val & 0xffff0000) == val);
}
return false;
}], HI16_f32>;
// Does the SFP constant fit into 18 bits?
def fpimm18 : PatLeaf<(fpimm), [{
if (N->getValueType(0) == MVT::f32) {
uint32_t Value = FloatToBits(N->getValueAPF().convertToFloat());
return ((Value & ((1 << 19) - 1)) == Value);
}
return false;
}], FPimm_u18>;
//===----------------------------------------------------------------------===//
// 64-bit operands (TODO):
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// build_vector operands:
//===----------------------------------------------------------------------===//
// v16i8SExt8Imm_xform function: convert build_vector to 8-bit sign extended
// immediate constant load for v16i8 vectors. N.B.: The incoming constant has
// to be a 16-bit quantity with the upper and lower bytes equal (e.g., 0x2a2a).
def v16i8SExt8Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8);
}]>;
// v16i8SExt8Imm: Predicate test for 8-bit sign extended immediate constant
// load, works in conjunction with its transform function. N.B.: This relies the
// incoming constant being a 16-bit quantity, where the upper and lower bytes
// are EXACTLY the same (e.g., 0x2a2a)
def v16i8SExt8Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8).getNode() != 0;
}], v16i8SExt8Imm_xform>;
// v16i8U8Imm_xform function: convert build_vector to unsigned 8-bit
// immediate constant load for v16i8 vectors. N.B.: The incoming constant has
// to be a 16-bit quantity with the upper and lower bytes equal (e.g., 0x2a2a).
def v16i8U8Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8);
}]>;
// v16i8U8Imm: Predicate test for unsigned 8-bit immediate constant
// load, works in conjunction with its transform function. N.B.: This relies the
// incoming constant being a 16-bit quantity, where the upper and lower bytes
// are EXACTLY the same (e.g., 0x2a2a)
def v16i8U8Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8).getNode() != 0;
}], v16i8U8Imm_xform>;
// v8i16SExt8Imm_xform function: convert build_vector to 8-bit sign extended
// immediate constant load for v8i16 vectors.
def v8i16SExt8Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i16);
}]>;
// v8i16SExt8Imm: Predicate test for 8-bit sign extended immediate constant
// load, works in conjunction with its transform function.
def v8i16SExt8Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i16).getNode() != 0;
}], v8i16SExt8Imm_xform>;
// v8i16SExt10Imm_xform function: convert build_vector to 16-bit sign extended
// immediate constant load for v8i16 vectors.
def v8i16SExt10Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16);
}]>;
// v8i16SExt10Imm: Predicate test for 16-bit sign extended immediate constant
// load, works in conjunction with its transform function.
def v8i16SExt10Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16).getNode() != 0;
}], v8i16SExt10Imm_xform>;
// v8i16Uns10Imm_xform function: convert build_vector to 16-bit unsigned
// immediate constant load for v8i16 vectors.
def v8i16Uns10Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16);
}]>;
// v8i16Uns10Imm: Predicate test for 16-bit unsigned immediate constant
// load, works in conjunction with its transform function.
def v8i16Uns10Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16).getNode() != 0;
}], v8i16Uns10Imm_xform>;
// v8i16SExt16Imm_xform function: convert build_vector to 16-bit sign extended
// immediate constant load for v8i16 vectors.
def v8i16Uns16Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i16);
}]>;
// v8i16SExt16Imm: Predicate test for 16-bit sign extended immediate constant
// load, works in conjunction with its transform function.
def v8i16SExt16Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i16).getNode() != 0;
}], v8i16Uns16Imm_xform>;
// v4i32SExt10Imm_xform function: convert build_vector to 10-bit sign extended
// immediate constant load for v4i32 vectors.
def v4i32SExt10Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32);
}]>;
// v4i32SExt10Imm: Predicate test for 10-bit sign extended immediate constant
// load, works in conjunction with its transform function.
def v4i32SExt10Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32).getNode() != 0;
}], v4i32SExt10Imm_xform>;
// v4i32Uns10Imm_xform function: convert build_vector to 10-bit unsigned
// immediate constant load for v4i32 vectors.
def v4i32Uns10Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32);
}]>;
// v4i32Uns10Imm: Predicate test for 10-bit unsigned immediate constant
// load, works in conjunction with its transform function.
def v4i32Uns10Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32).getNode() != 0;
}], v4i32Uns10Imm_xform>;
// v4i32SExt16Imm_xform function: convert build_vector to 16-bit sign extended
// immediate constant load for v4i32 vectors.
def v4i32SExt16Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i32);
}]>;
// v4i32SExt16Imm: Predicate test for 16-bit sign extended immediate constant
// load, works in conjunction with its transform function.
def v4i32SExt16Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i32).getNode() != 0;
}], v4i32SExt16Imm_xform>;
// v4i32Uns18Imm_xform function: convert build_vector to 18-bit unsigned
// immediate constant load for v4i32 vectors.
def v4i32Uns18Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_u18imm(N, *CurDAG, MVT::i32);
}]>;
// v4i32Uns18Imm: Predicate test for 18-bit unsigned immediate constant load,
// works in conjunction with its transform function.
def v4i32Uns18Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_u18imm(N, *CurDAG, MVT::i32).getNode() != 0;
}], v4i32Uns18Imm_xform>;
// ILHUvec_get_imm xform function: convert build_vector to ILHUvec imm constant
// load.
def ILHUvec_get_imm: SDNodeXForm<build_vector, [{
return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i32);
}]>;
/// immILHUvec: Predicate test for a ILHU constant vector.
def immILHUvec: PatLeaf<(build_vector), [{
return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i32).getNode() != 0;
}], ILHUvec_get_imm>;
// Catch-all for any other i32 vector constants
def v4i32_get_imm: SDNodeXForm<build_vector, [{
return SPU::get_v4i32_imm(N, *CurDAG);
}]>;
def v4i32Imm: PatLeaf<(build_vector), [{
return SPU::get_v4i32_imm(N, *CurDAG).getNode() != 0;
}], v4i32_get_imm>;
// v2i64SExt10Imm_xform function: convert build_vector to 10-bit sign extended
// immediate constant load for v2i64 vectors.
def v2i64SExt10Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i64);
}]>;
// v2i64SExt10Imm: Predicate test for 10-bit sign extended immediate constant
// load, works in conjunction with its transform function.
def v2i64SExt10Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i64).getNode() != 0;
}], v2i64SExt10Imm_xform>;
// v2i64SExt16Imm_xform function: convert build_vector to 16-bit sign extended
// immediate constant load for v2i64 vectors.
def v2i64SExt16Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i64);
}]>;
// v2i64SExt16Imm: Predicate test for 16-bit sign extended immediate constant
// load, works in conjunction with its transform function.
def v2i64SExt16Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i64).getNode() != 0;
}], v2i64SExt16Imm_xform>;
// v2i64Uns18Imm_xform function: convert build_vector to 18-bit unsigned
// immediate constant load for v2i64 vectors.
def v2i64Uns18Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_u18imm(N, *CurDAG, MVT::i64);
}]>;
// v2i64Uns18Imm: Predicate test for 18-bit unsigned immediate constant load,
// works in conjunction with its transform function.
def v2i64Uns18Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_u18imm(N, *CurDAG, MVT::i64).getNode() != 0;
}], v2i64Uns18Imm_xform>;
/// immILHUvec: Predicate test for a ILHU constant vector.
def immILHUvec_i64: PatLeaf<(build_vector), [{
return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i64).getNode() != 0;
}], ILHUvec_get_imm>;
// Catch-all for any other i32 vector constants
def v2i64_get_imm: SDNodeXForm<build_vector, [{
return SPU::get_v2i64_imm(N, *CurDAG);
}]>;
def v2i64Imm: PatLeaf<(build_vector), [{
return SPU::get_v2i64_imm(N, *CurDAG).getNode() != 0;
}], v2i64_get_imm>;
//===----------------------------------------------------------------------===//
// Operand Definitions.
def s7imm: Operand<i8> {
let PrintMethod = "printS7ImmOperand";
}
def s7imm_i8: Operand<i8> {
let PrintMethod = "printS7ImmOperand";
}
def u7imm: Operand<i16> {
let PrintMethod = "printU7ImmOperand";
}
def u7imm_i8: Operand<i8> {
let PrintMethod = "printU7ImmOperand";
}
def u7imm_i32: Operand<i32> {
let PrintMethod = "printU7ImmOperand";
}
// Halfword, signed 10-bit constant
def s10imm : Operand<i16> {
let PrintMethod = "printS10ImmOperand";
}
def s10imm_i8: Operand<i8> {
let PrintMethod = "printS10ImmOperand";
}
def s10imm_i32: Operand<i32> {
let PrintMethod = "printS10ImmOperand";
}
def s10imm_i64: Operand<i64> {
let PrintMethod = "printS10ImmOperand";
}
// Unsigned 10-bit integers:
def u10imm: Operand<i16> {
let PrintMethod = "printU10ImmOperand";
}
def u10imm_i8: Operand<i8> {
let PrintMethod = "printU10ImmOperand";
}
def u10imm_i32: Operand<i32> {
let PrintMethod = "printU10ImmOperand";
}
def s16imm : Operand<i16> {
let PrintMethod = "printS16ImmOperand";
}
def s16imm_i8: Operand<i8> {
let PrintMethod = "printS16ImmOperand";
}
def s16imm_i32: Operand<i32> {
let PrintMethod = "printS16ImmOperand";
}
def s16imm_i64: Operand<i64> {
let PrintMethod = "printS16ImmOperand";
}
def s16imm_f32: Operand<f32> {
let PrintMethod = "printS16ImmOperand";
}
def s16imm_f64: Operand<f64> {
let PrintMethod = "printS16ImmOperand";
}
def u16imm_i64 : Operand<i64> {
let PrintMethod = "printU16ImmOperand";
}
def u16imm_i32 : Operand<i32> {
let PrintMethod = "printU16ImmOperand";
}
def u16imm : Operand<i16> {
let PrintMethod = "printU16ImmOperand";
}
def f16imm : Operand<f32> {
let PrintMethod = "printU16ImmOperand";
}
def s18imm : Operand<i32> {
let PrintMethod = "printS18ImmOperand";
}
def u18imm : Operand<i32> {
let PrintMethod = "printU18ImmOperand";
}
def u18imm_i64 : Operand<i64> {
let PrintMethod = "printU18ImmOperand";
}
def f18imm : Operand<f32> {
let PrintMethod = "printU18ImmOperand";
}
def f18imm_f64 : Operand<f64> {
let PrintMethod = "printU18ImmOperand";
}
// Negated 7-bit halfword rotate immediate operands
def rothNeg7imm : Operand<i32> {
let PrintMethod = "printROTHNeg7Imm";
}
def rothNeg7imm_i16 : Operand<i16> {
let PrintMethod = "printROTHNeg7Imm";
}
// Negated 7-bit word rotate immediate operands
def rotNeg7imm : Operand<i32> {
let PrintMethod = "printROTNeg7Imm";
}
def rotNeg7imm_i16 : Operand<i16> {
let PrintMethod = "printROTNeg7Imm";
}
def rotNeg7imm_i8 : Operand<i8> {
let PrintMethod = "printROTNeg7Imm";
}
def target : Operand<OtherVT> {
let PrintMethod = "printBranchOperand";
}
// Absolute address call target
def calltarget : Operand<iPTR> {
let PrintMethod = "printCallOperand";
let MIOperandInfo = (ops u18imm:$calldest);
}
// PC relative call target
def relcalltarget : Operand<iPTR> {
let PrintMethod = "printPCRelativeOperand";
let MIOperandInfo = (ops s16imm:$calldest);
}
// Branch targets:
def brtarget : Operand<OtherVT> {
let PrintMethod = "printPCRelativeOperand";
}
// Hint for branch target
def hbrtarget : Operand<OtherVT> {
let PrintMethod = "printHBROperand";
}
// Indirect call target
def indcalltarget : Operand<iPTR> {
let PrintMethod = "printCallOperand";
let MIOperandInfo = (ops ptr_rc:$calldest);
}
def symbolHi: Operand<i32> {
let PrintMethod = "printSymbolHi";
}
def symbolLo: Operand<i32> {
let PrintMethod = "printSymbolLo";
}
def symbolLSA: Operand<i32> {
let PrintMethod = "printSymbolLSA";
}
// Shuffle address memory operaand [s7imm(reg) d-format]
def shufaddr : Operand<iPTR> {
let PrintMethod = "printShufAddr";
let MIOperandInfo = (ops s7imm:$imm, ptr_rc:$reg);
}
// memory s10imm(reg) operand
def dformaddr : Operand<iPTR> {
let PrintMethod = "printDFormAddr";
let MIOperandInfo = (ops s10imm:$imm, ptr_rc:$reg);
}
// 256K local store address
// N.B.: The tblgen code generator expects to have two operands, an offset
// and a pointer. Of these, only the immediate is actually used.
def addr256k : Operand<iPTR> {
let PrintMethod = "printAddr256K";
let MIOperandInfo = (ops s16imm:$imm, ptr_rc:$reg);
}
// memory s18imm(reg) operand
def memri18 : Operand<iPTR> {
let PrintMethod = "printMemRegImmS18";
let MIOperandInfo = (ops s18imm:$imm, ptr_rc:$reg);
}
// memory register + register operand
def memrr : Operand<iPTR> {
let PrintMethod = "printMemRegReg";
let MIOperandInfo = (ops ptr_rc:$reg_a, ptr_rc:$reg_b);
}
// Define SPU-specific addressing modes: These come in three basic
// flavors:
//
// D-form : [r+I10] (10-bit signed offset + reg)
// X-form : [r+r] (reg+reg)
// A-form : abs (256K LSA offset)
// D-form(2): [r+I7] (7-bit signed offset + reg)
def dform_addr : ComplexPattern<iPTR, 2, "SelectDFormAddr", [], []>;
def xform_addr : ComplexPattern<iPTR, 2, "SelectXFormAddr", [], []>;
def aform_addr : ComplexPattern<iPTR, 2, "SelectAFormAddr", [], []>;
def dform2_addr : ComplexPattern<iPTR, 2, "SelectDForm2Addr", [], []>;