llvm-6502/lib/CodeGen/SjLjEHPrepare.cpp

507 lines
20 KiB
C++
Raw Normal View History

//===- SjLjEHPrepare.cpp - Eliminate Invoke & Unwind instructions ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation is designed for use by code generators which use SjLj
// based exception handling.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include <set>
using namespace llvm;
#define DEBUG_TYPE "sjljehprepare"
STATISTIC(NumInvokes, "Number of invokes replaced");
STATISTIC(NumSpilled, "Number of registers live across unwind edges");
namespace {
class SjLjEHPrepare : public FunctionPass {
const TargetMachine *TM;
Type *FunctionContextTy;
Constant *RegisterFn;
Constant *UnregisterFn;
Constant *BuiltinSetjmpFn;
Constant *FrameAddrFn;
Constant *StackAddrFn;
Constant *StackRestoreFn;
Constant *LSDAAddrFn;
Value *PersonalityFn;
Constant *CallSiteFn;
Constant *FuncCtxFn;
AllocaInst *FuncCtx;
public:
static char ID; // Pass identification, replacement for typeid
explicit SjLjEHPrepare(const TargetMachine *TM) : FunctionPass(ID), TM(TM) {}
bool doInitialization(Module &M) override;
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {}
const char *getPassName() const override {
return "SJLJ Exception Handling preparation";
}
private:
bool setupEntryBlockAndCallSites(Function &F);
void substituteLPadValues(LandingPadInst *LPI, Value *ExnVal, Value *SelVal);
Value *setupFunctionContext(Function &F, ArrayRef<LandingPadInst *> LPads);
void lowerIncomingArguments(Function &F);
void lowerAcrossUnwindEdges(Function &F, ArrayRef<InvokeInst *> Invokes);
void insertCallSiteStore(Instruction *I, int Number);
};
} // end anonymous namespace
char SjLjEHPrepare::ID = 0;
// Public Interface To the SjLjEHPrepare pass.
FunctionPass *llvm::createSjLjEHPreparePass(const TargetMachine *TM) {
return new SjLjEHPrepare(TM);
}
// doInitialization - Set up decalarations and types needed to process
// exceptions.
bool SjLjEHPrepare::doInitialization(Module &M) {
// Build the function context structure.
// builtin_setjmp uses a five word jbuf
Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext());
Type *Int32Ty = Type::getInt32Ty(M.getContext());
FunctionContextTy = StructType::get(VoidPtrTy, // __prev
Int32Ty, // call_site
ArrayType::get(Int32Ty, 4), // __data
VoidPtrTy, // __personality
VoidPtrTy, // __lsda
ArrayType::get(VoidPtrTy, 5), // __jbuf
NULL);
RegisterFn = M.getOrInsertFunction(
"_Unwind_SjLj_Register", Type::getVoidTy(M.getContext()),
PointerType::getUnqual(FunctionContextTy), (Type *)nullptr);
UnregisterFn = M.getOrInsertFunction(
"_Unwind_SjLj_Unregister", Type::getVoidTy(M.getContext()),
PointerType::getUnqual(FunctionContextTy), (Type *)nullptr);
FrameAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::frameaddress);
StackAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave);
StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore);
BuiltinSetjmpFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_setjmp);
LSDAAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_lsda);
CallSiteFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_callsite);
FuncCtxFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_functioncontext);
PersonalityFn = nullptr;
return true;
}
/// insertCallSiteStore - Insert a store of the call-site value to the
/// function context
void SjLjEHPrepare::insertCallSiteStore(Instruction *I, int Number) {
IRBuilder<> Builder(I);
// Get a reference to the call_site field.
Type *Int32Ty = Type::getInt32Ty(I->getContext());
Value *Zero = ConstantInt::get(Int32Ty, 0);
Value *One = ConstantInt::get(Int32Ty, 1);
Value *Idxs[2] = { Zero, One };
Value *CallSite = Builder.CreateGEP(FuncCtx, Idxs, "call_site");
// Insert a store of the call-site number
ConstantInt *CallSiteNoC =
ConstantInt::get(Type::getInt32Ty(I->getContext()), Number);
Builder.CreateStore(CallSiteNoC, CallSite, true /*volatile*/);
}
/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
/// we reach blocks we've already seen.
static void MarkBlocksLiveIn(BasicBlock *BB,
SmallPtrSet<BasicBlock *, 64> &LiveBBs) {
if (!LiveBBs.insert(BB))
return; // already been here.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
MarkBlocksLiveIn(*PI, LiveBBs);
}
/// substituteLPadValues - Substitute the values returned by the landingpad
/// instruction with those returned by the personality function.
void SjLjEHPrepare::substituteLPadValues(LandingPadInst *LPI, Value *ExnVal,
Value *SelVal) {
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
SmallVector<Value *, 8> UseWorkList(LPI->user_begin(), LPI->user_end());
while (!UseWorkList.empty()) {
Value *Val = UseWorkList.pop_back_val();
ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Val);
if (!EVI)
continue;
if (EVI->getNumIndices() != 1)
continue;
if (*EVI->idx_begin() == 0)
EVI->replaceAllUsesWith(ExnVal);
else if (*EVI->idx_begin() == 1)
EVI->replaceAllUsesWith(SelVal);
if (EVI->getNumUses() == 0)
EVI->eraseFromParent();
}
if (LPI->getNumUses() == 0)
return;
// There are still some uses of LPI. Construct an aggregate with the exception
// values and replace the LPI with that aggregate.
Type *LPadType = LPI->getType();
Value *LPadVal = UndefValue::get(LPadType);
IRBuilder<> Builder(
std::next(BasicBlock::iterator(cast<Instruction>(SelVal))));
LPadVal = Builder.CreateInsertValue(LPadVal, ExnVal, 0, "lpad.val");
LPadVal = Builder.CreateInsertValue(LPadVal, SelVal, 1, "lpad.val");
LPI->replaceAllUsesWith(LPadVal);
}
/// setupFunctionContext - Allocate the function context on the stack and fill
/// it with all of the data that we know at this point.
Value *SjLjEHPrepare::setupFunctionContext(Function &F,
ArrayRef<LandingPadInst *> LPads) {
BasicBlock *EntryBB = F.begin();
// Create an alloca for the incoming jump buffer ptr and the new jump buffer
// that needs to be restored on all exits from the function. This is an alloca
// because the value needs to be added to the global context list.
const TargetLowering *TLI = TM->getTargetLowering();
unsigned Align =
TLI->getDataLayout()->getPrefTypeAlignment(FunctionContextTy);
FuncCtx = new AllocaInst(FunctionContextTy, nullptr, Align, "fn_context",
EntryBB->begin());
// Fill in the function context structure.
for (unsigned I = 0, E = LPads.size(); I != E; ++I) {
LandingPadInst *LPI = LPads[I];
IRBuilder<> Builder(LPI->getParent()->getFirstInsertionPt());
// Reference the __data field.
Value *FCData = Builder.CreateConstGEP2_32(FuncCtx, 0, 2, "__data");
// The exception values come back in context->__data[0].
Value *ExceptionAddr =
Builder.CreateConstGEP2_32(FCData, 0, 0, "exception_gep");
Value *ExnVal = Builder.CreateLoad(ExceptionAddr, true, "exn_val");
ExnVal = Builder.CreateIntToPtr(ExnVal, Builder.getInt8PtrTy());
Value *SelectorAddr =
Builder.CreateConstGEP2_32(FCData, 0, 1, "exn_selector_gep");
Value *SelVal = Builder.CreateLoad(SelectorAddr, true, "exn_selector_val");
substituteLPadValues(LPI, ExnVal, SelVal);
}
// Personality function
IRBuilder<> Builder(EntryBB->getTerminator());
if (!PersonalityFn)
PersonalityFn = LPads[0]->getPersonalityFn();
Value *PersonalityFieldPtr =
Builder.CreateConstGEP2_32(FuncCtx, 0, 3, "pers_fn_gep");
Builder.CreateStore(
Builder.CreateBitCast(PersonalityFn, Builder.getInt8PtrTy()),
PersonalityFieldPtr, /*isVolatile=*/true);
// LSDA address
Value *LSDA = Builder.CreateCall(LSDAAddrFn, "lsda_addr");
Value *LSDAFieldPtr = Builder.CreateConstGEP2_32(FuncCtx, 0, 4, "lsda_gep");
Builder.CreateStore(LSDA, LSDAFieldPtr, /*isVolatile=*/true);
return FuncCtx;
}
/// lowerIncomingArguments - To avoid having to handle incoming arguments
/// specially, we lower each arg to a copy instruction in the entry block. This
/// ensures that the argument value itself cannot be live out of the entry
/// block.
void SjLjEHPrepare::lowerIncomingArguments(Function &F) {
BasicBlock::iterator AfterAllocaInsPt = F.begin()->begin();
while (isa<AllocaInst>(AfterAllocaInsPt) &&
isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsPt)->getArraySize()))
++AfterAllocaInsPt;
for (Function::arg_iterator AI = F.arg_begin(), AE = F.arg_end(); AI != AE;
++AI) {
Type *Ty = AI->getType();
// Aggregate types can't be cast, but are legal argument types, so we have
// to handle them differently. We use an extract/insert pair as a
// lightweight method to achieve the same goal.
if (isa<StructType>(Ty) || isa<ArrayType>(Ty)) {
Instruction *EI = ExtractValueInst::Create(AI, 0, "", AfterAllocaInsPt);
Instruction *NI = InsertValueInst::Create(AI, EI, 0);
NI->insertAfter(EI);
AI->replaceAllUsesWith(NI);
// Set the operand of the instructions back to the AllocaInst.
EI->setOperand(0, AI);
NI->setOperand(0, AI);
} else {
// This is always a no-op cast because we're casting AI to AI->getType()
// so src and destination types are identical. BitCast is the only
// possibility.
CastInst *NC = new BitCastInst(AI, AI->getType(), AI->getName() + ".tmp",
AfterAllocaInsPt);
AI->replaceAllUsesWith(NC);
// Set the operand of the cast instruction back to the AllocaInst.
// Normally it's forbidden to replace a CastInst's operand because it
// could cause the opcode to reflect an illegal conversion. However, we're
// replacing it here with the same value it was constructed with. We do
// this because the above replaceAllUsesWith() clobbered the operand, but
// we want this one to remain.
NC->setOperand(0, AI);
}
}
}
/// lowerAcrossUnwindEdges - Find all variables which are alive across an unwind
/// edge and spill them.
void SjLjEHPrepare::lowerAcrossUnwindEdges(Function &F,
ArrayRef<InvokeInst *> Invokes) {
// Finally, scan the code looking for instructions with bad live ranges.
for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
for (BasicBlock::iterator II = BB->begin(), IIE = BB->end(); II != IIE;
++II) {
// Ignore obvious cases we don't have to handle. In particular, most
// instructions either have no uses or only have a single use inside the
// current block. Ignore them quickly.
Instruction *Inst = II;
if (Inst->use_empty())
continue;
if (Inst->hasOneUse() &&
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
cast<Instruction>(Inst->user_back())->getParent() == BB &&
!isa<PHINode>(Inst->user_back()))
continue;
// If this is an alloca in the entry block, it's not a real register
// value.
if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
if (isa<ConstantInt>(AI->getArraySize()) && BB == F.begin())
continue;
// Avoid iterator invalidation by copying users to a temporary vector.
SmallVector<Instruction *, 16> Users;
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
for (User *U : Inst->users()) {
Instruction *UI = cast<Instruction>(U);
if (UI->getParent() != BB || isa<PHINode>(UI))
Users.push_back(UI);
}
// Find all of the blocks that this value is live in.
SmallPtrSet<BasicBlock *, 64> LiveBBs;
LiveBBs.insert(Inst->getParent());
while (!Users.empty()) {
Instruction *U = Users.back();
Users.pop_back();
if (!isa<PHINode>(U)) {
MarkBlocksLiveIn(U->getParent(), LiveBBs);
} else {
// Uses for a PHI node occur in their predecessor block.
PHINode *PN = cast<PHINode>(U);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == Inst)
MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
}
}
// Now that we know all of the blocks that this thing is live in, see if
// it includes any of the unwind locations.
bool NeedsSpill = false;
for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
DEBUG(dbgs() << "SJLJ Spill: " << *Inst << " around "
<< UnwindBlock->getName() << "\n");
NeedsSpill = true;
break;
}
}
// If we decided we need a spill, do it.
// FIXME: Spilling this way is overkill, as it forces all uses of
// the value to be reloaded from the stack slot, even those that aren't
// in the unwind blocks. We should be more selective.
if (NeedsSpill) {
DemoteRegToStack(*Inst, true);
++NumSpilled;
}
}
}
// Go through the landing pads and remove any PHIs there.
for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
LandingPadInst *LPI = UnwindBlock->getLandingPadInst();
// Place PHIs into a set to avoid invalidating the iterator.
SmallPtrSet<PHINode *, 8> PHIsToDemote;
for (BasicBlock::iterator PN = UnwindBlock->begin(); isa<PHINode>(PN); ++PN)
PHIsToDemote.insert(cast<PHINode>(PN));
if (PHIsToDemote.empty())
continue;
// Demote the PHIs to the stack.
for (SmallPtrSet<PHINode *, 8>::iterator I = PHIsToDemote.begin(),
E = PHIsToDemote.end();
I != E; ++I)
DemotePHIToStack(*I);
// Move the landingpad instruction back to the top of the landing pad block.
LPI->moveBefore(UnwindBlock->begin());
}
}
/// setupEntryBlockAndCallSites - Setup the entry block by creating and filling
/// the function context and marking the call sites with the appropriate
/// values. These values are used by the DWARF EH emitter.
bool SjLjEHPrepare::setupEntryBlockAndCallSites(Function &F) {
SmallVector<ReturnInst *, 16> Returns;
SmallVector<InvokeInst *, 16> Invokes;
SmallSetVector<LandingPadInst *, 16> LPads;
// Look through the terminators of the basic blocks to find invokes.
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
if (Function *Callee = II->getCalledFunction())
if (Callee->isIntrinsic() &&
Callee->getIntrinsicID() == Intrinsic::donothing) {
// Remove the NOP invoke.
BranchInst::Create(II->getNormalDest(), II);
II->eraseFromParent();
continue;
}
Invokes.push_back(II);
LPads.insert(II->getUnwindDest()->getLandingPadInst());
} else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
Returns.push_back(RI);
}
if (Invokes.empty())
return false;
NumInvokes += Invokes.size();
lowerIncomingArguments(F);
lowerAcrossUnwindEdges(F, Invokes);
Value *FuncCtx =
setupFunctionContext(F, makeArrayRef(LPads.begin(), LPads.end()));
BasicBlock *EntryBB = F.begin();
IRBuilder<> Builder(EntryBB->getTerminator());
// Get a reference to the jump buffer.
Value *JBufPtr = Builder.CreateConstGEP2_32(FuncCtx, 0, 5, "jbuf_gep");
// Save the frame pointer.
Value *FramePtr = Builder.CreateConstGEP2_32(JBufPtr, 0, 0, "jbuf_fp_gep");
Value *Val = Builder.CreateCall(FrameAddrFn, Builder.getInt32(0), "fp");
Builder.CreateStore(Val, FramePtr, /*isVolatile=*/true);
// Save the stack pointer.
Value *StackPtr = Builder.CreateConstGEP2_32(JBufPtr, 0, 2, "jbuf_sp_gep");
Val = Builder.CreateCall(StackAddrFn, "sp");
Builder.CreateStore(Val, StackPtr, /*isVolatile=*/true);
// Call the setjmp instrinsic. It fills in the rest of the jmpbuf.
Value *SetjmpArg = Builder.CreateBitCast(JBufPtr, Builder.getInt8PtrTy());
Builder.CreateCall(BuiltinSetjmpFn, SetjmpArg);
// Store a pointer to the function context so that the back-end will know
// where to look for it.
Value *FuncCtxArg = Builder.CreateBitCast(FuncCtx, Builder.getInt8PtrTy());
Builder.CreateCall(FuncCtxFn, FuncCtxArg);
// At this point, we are all set up, update the invoke instructions to mark
// their call_site values.
for (unsigned I = 0, E = Invokes.size(); I != E; ++I) {
insertCallSiteStore(Invokes[I], I + 1);
ConstantInt *CallSiteNum =
ConstantInt::get(Type::getInt32Ty(F.getContext()), I + 1);
// Record the call site value for the back end so it stays associated with
// the invoke.
CallInst::Create(CallSiteFn, CallSiteNum, "", Invokes[I]);
}
// Mark call instructions that aren't nounwind as no-action (call_site ==
// -1). Skip the entry block, as prior to then, no function context has been
// created for this function and any unexpected exceptions thrown will go
// directly to the caller's context, which is what we want anyway, so no need
// to do anything here.
for (Function::iterator BB = F.begin(), E = F.end(); ++BB != E;)
for (BasicBlock::iterator I = BB->begin(), end = BB->end(); I != end; ++I)
if (CallInst *CI = dyn_cast<CallInst>(I)) {
if (!CI->doesNotThrow())
insertCallSiteStore(CI, -1);
} else if (ResumeInst *RI = dyn_cast<ResumeInst>(I)) {
insertCallSiteStore(RI, -1);
}
// Register the function context and make sure it's known to not throw
CallInst *Register =
CallInst::Create(RegisterFn, FuncCtx, "", EntryBB->getTerminator());
Register->setDoesNotThrow();
// Following any allocas not in the entry block, update the saved SP in the
// jmpbuf to the new value.
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
if (BB == F.begin())
continue;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
if (CallInst *CI = dyn_cast<CallInst>(I)) {
if (CI->getCalledFunction() != StackRestoreFn)
continue;
} else if (!isa<AllocaInst>(I)) {
continue;
}
Instruction *StackAddr = CallInst::Create(StackAddrFn, "sp");
StackAddr->insertAfter(I);
Instruction *StoreStackAddr = new StoreInst(StackAddr, StackPtr, true);
StoreStackAddr->insertAfter(StackAddr);
}
}
// Finally, for any returns from this function, if this function contains an
// invoke, add a call to unregister the function context.
for (unsigned I = 0, E = Returns.size(); I != E; ++I)
CallInst::Create(UnregisterFn, FuncCtx, "", Returns[I]);
return true;
}
bool SjLjEHPrepare::runOnFunction(Function &F) {
bool Res = setupEntryBlockAndCallSites(F);
return Res;
}