llvm-6502/include/llvm/DerivedTypes.h

441 lines
16 KiB
C
Raw Normal View History

//===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declarations of classes that represent "derived
// types". These are things like "arrays of x" or "structure of x, y, z" or
// "method returning x taking (y,z) as parameters", etc...
//
// The implementations of these classes live in the Type.cpp file.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DERIVED_TYPES_H
#define LLVM_DERIVED_TYPES_H
#include "llvm/Type.h"
namespace llvm {
template<class ValType, class TypeClass> class TypeMap;
class FunctionValType;
class ArrayValType;
class StructValType;
class PointerValType;
class DerivedType : public Type, public AbstractTypeUser {
/// RefCount - This counts the number of PATypeHolders that are pointing to
/// this type. When this number falls to zero, if the type is abstract and
/// has no AbstractTypeUsers, the type is deleted.
///
mutable unsigned RefCount;
// AbstractTypeUsers - Implement a list of the users that need to be notified
// if I am a type, and I get resolved into a more concrete type.
//
///// FIXME: kill mutable nonsense when Types are not const
mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;
protected:
DerivedType(PrimitiveID id) : Type("", id), RefCount(0) {}
~DerivedType() {
assert(AbstractTypeUsers.empty());
}
/// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type
/// that the current type has transitioned from being abstract to being
/// concrete.
///
void notifyUsesThatTypeBecameConcrete();
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems.
void dropAllTypeUses();
public:
//===--------------------------------------------------------------------===//
// Abstract Type handling methods - These types have special lifetimes, which
// are managed by (add|remove)AbstractTypeUser. See comments in
// AbstractTypeUser.h for more information.
// addAbstractTypeUser - Notify an abstract type that there is a new user of
// it. This function is called primarily by the PATypeHandle class.
//
void addAbstractTypeUser(AbstractTypeUser *U) const {
assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!");
AbstractTypeUsers.push_back(U);
}
// removeAbstractTypeUser - Notify an abstract type that a user of the class
// no longer has a handle to the type. This function is called primarily by
// the PATypeHandle class. When there are no users of the abstract type, it
// is annihilated, because there is no way to get a reference to it ever
// again.
//
void removeAbstractTypeUser(AbstractTypeUser *U) const;
// refineAbstractTypeTo - This function is used to when it is discovered that
// the 'this' abstract type is actually equivalent to the NewType specified.
// This causes all users of 'this' to switch to reference the more concrete
// type NewType and for 'this' to be deleted.
//
void refineAbstractTypeTo(const Type *NewType);
void addRef() const {
assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
++RefCount;
}
void dropRef() const {
assert(isAbstract() && "Cannot drop a refernce to a non-abstract type!");
assert(RefCount && "No objects are currently referencing this object!");
// If this is the last PATypeHolder using this object, and there are no
// PATypeHandles using it, the type is dead, delete it now.
if (--RefCount == 0 && AbstractTypeUsers.empty())
delete this;
}
void dump() const { Value::dump(); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const DerivedType *T) { return true; }
static inline bool classof(const Type *T) {
return T->isDerivedType();
}
static inline bool classof(const Value *V) {
return isa<Type>(V) && classof(cast<Type>(V));
}
};
class FunctionType : public DerivedType {
friend class TypeMap<FunctionValType, FunctionType>;
bool isVarArgs;
FunctionType(const FunctionType &); // Do not implement
const FunctionType &operator=(const FunctionType &); // Do not implement
protected:
// This should really be private, but it squelches a bogus warning
// from GCC to make them protected: warning: `class FunctionType' only
// defines private constructors and has no friends
// Private ctor - Only can be created by a static member...
FunctionType(const Type *Result, const std::vector<const Type*> &Params,
bool IsVarArgs);
public:
/// FunctionType::get - This static method is the primary way of constructing
/// a FunctionType
static FunctionType *get(const Type *Result,
const std::vector<const Type*> &Params,
bool isVarArg);
inline bool isVarArg() const { return isVarArgs; }
inline const Type *getReturnType() const { return ContainedTys[0]; }
typedef std::vector<PATypeHandle>::const_iterator param_iterator;
param_iterator param_begin() const { return ContainedTys.begin()+1; }
param_iterator param_end() const { return ContainedTys.end(); }
// Parameter type accessors...
const Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
// getNumParams - Return the number of fixed parameters this function type
// requires. This does not consider varargs.
//
unsigned getNumParams() const { return ContainedTys.size()-1; }
// Implement the AbstractTypeUser interface.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
virtual void typeBecameConcrete(const DerivedType *AbsTy);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const FunctionType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getPrimitiveID() == FunctionTyID;
}
static inline bool classof(const Value *V) {
return isa<Type>(V) && classof(cast<Type>(V));
}
};
// CompositeType - Common super class of ArrayType, StructType, and PointerType
//
class CompositeType : public DerivedType {
protected:
inline CompositeType(PrimitiveID id) : DerivedType(id) { }
public:
// getTypeAtIndex - Given an index value into the type, return the type of the
// element.
//
virtual const Type *getTypeAtIndex(const Value *V) const = 0;
virtual bool indexValid(const Value *V) const = 0;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const CompositeType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getPrimitiveID() == ArrayTyID ||
T->getPrimitiveID() == StructTyID ||
T->getPrimitiveID() == PointerTyID;
}
static inline bool classof(const Value *V) {
return isa<Type>(V) && classof(cast<Type>(V));
}
};
class StructType : public CompositeType {
friend class TypeMap<StructValType, StructType>;
StructType(const StructType &); // Do not implement
const StructType &operator=(const StructType &); // Do not implement
protected:
// This should really be private, but it squelches a bogus warning
// from GCC to make them protected: warning: `class StructType' only
// defines private constructors and has no friends
// Private ctor - Only can be created by a static member...
StructType(const std::vector<const Type*> &Types);
public:
/// StructType::get - This static method is the primary way to create a
/// StructType.
static StructType *get(const std::vector<const Type*> &Params);
// Iterator access to the elements
typedef std::vector<PATypeHandle>::const_iterator element_iterator;
element_iterator element_begin() const { return ContainedTys.begin(); }
element_iterator element_end() const { return ContainedTys.end(); }
// Random access to the elements
unsigned getNumElements() const { return ContainedTys.size(); }
const Type *getElementType(unsigned N) const {
assert(N < ContainedTys.size() && "Element number out of range!");
return ContainedTys[N];
}
// getTypeAtIndex - Given an index value into the type, return the type of the
// element. For a structure type, this must be a constant value...
//
virtual const Type *getTypeAtIndex(const Value *V) const ;
virtual bool indexValid(const Value *V) const;
// Implement the AbstractTypeUser interface.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
virtual void typeBecameConcrete(const DerivedType *AbsTy);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const StructType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getPrimitiveID() == StructTyID;
}
static inline bool classof(const Value *V) {
return isa<Type>(V) && classof(cast<Type>(V));
}
};
// SequentialType - This is the superclass of the array and pointer type
// classes. Both of these represent "arrays" in memory. The array type
// represents a specifically sized array, pointer types are unsized/unknown size
// arrays. SequentialType holds the common features of both, which stem from
// the fact that both lay their components out in memory identically.
//
class SequentialType : public CompositeType {
SequentialType(const SequentialType &); // Do not implement!
const SequentialType &operator=(const SequentialType &); // Do not implement!
protected:
SequentialType(PrimitiveID TID, const Type *ElType) : CompositeType(TID) {
ContainedTys.reserve(1);
ContainedTys.push_back(PATypeHandle(ElType, this));
}
public:
inline const Type *getElementType() const { return ContainedTys[0]; }
// getTypeAtIndex - Given an index value into the type, return the type of the
// element. For sequential types, there is only one subtype...
//
virtual const Type *getTypeAtIndex(const Value *V) const {
return ContainedTys[0];
}
virtual bool indexValid(const Value *V) const {
return V->getType()->isInteger();
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SequentialType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getPrimitiveID() == ArrayTyID ||
T->getPrimitiveID() == PointerTyID;
}
static inline bool classof(const Value *V) {
return isa<Type>(V) && classof(cast<Type>(V));
}
};
class ArrayType : public SequentialType {
friend class TypeMap<ArrayValType, ArrayType>;
unsigned NumElements;
ArrayType(const ArrayType &); // Do not implement
const ArrayType &operator=(const ArrayType &); // Do not implement
protected:
// This should really be private, but it squelches a bogus warning
// from GCC to make them protected: warning: `class ArrayType' only
// defines private constructors and has no friends
// Private ctor - Only can be created by a static member...
ArrayType(const Type *ElType, unsigned NumEl);
public:
/// ArrayType::get - This static method is the primary way to construct an
/// ArrayType
static ArrayType *get(const Type *ElementType, unsigned NumElements);
inline unsigned getNumElements() const { return NumElements; }
// Implement the AbstractTypeUser interface.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
virtual void typeBecameConcrete(const DerivedType *AbsTy);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ArrayType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getPrimitiveID() == ArrayTyID;
}
static inline bool classof(const Value *V) {
return isa<Type>(V) && classof(cast<Type>(V));
}
};
class PointerType : public SequentialType {
friend class TypeMap<PointerValType, PointerType>;
PointerType(const PointerType &); // Do not implement
const PointerType &operator=(const PointerType &); // Do not implement
protected:
// This should really be private, but it squelches a bogus warning
// from GCC to make them protected: warning: `class PointerType' only
// defines private constructors and has no friends
// Private ctor - Only can be created by a static member...
PointerType(const Type *ElType);
public:
/// PointerType::get - This is the only way to construct a new pointer type.
static PointerType *get(const Type *ElementType);
// Implement the AbstractTypeUser interface.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
virtual void typeBecameConcrete(const DerivedType *AbsTy);
// Implement support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const PointerType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getPrimitiveID() == PointerTyID;
}
static inline bool classof(const Value *V) {
return isa<Type>(V) && classof(cast<Type>(V));
}
};
class OpaqueType : public DerivedType {
OpaqueType(const OpaqueType &); // DO NOT IMPLEMENT
const OpaqueType &operator=(const OpaqueType &); // DO NOT IMPLEMENT
protected:
// This should really be private, but it squelches a bogus warning
// from GCC to make them protected: warning: `class OpaqueType' only
// defines private constructors and has no friends
// Private ctor - Only can be created by a static member...
OpaqueType();
public:
// OpaqueType::get - Static factory method for the OpaqueType class...
static OpaqueType *get() {
return new OpaqueType(); // All opaque types are distinct
}
// Implement the AbstractTypeUser interface.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
abort(); // FIXME: this is not really an AbstractTypeUser!
}
virtual void typeBecameConcrete(const DerivedType *AbsTy) {
abort(); // FIXME: this is not really an AbstractTypeUser!
}
// Implement support for type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const OpaqueType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getPrimitiveID() == OpaqueTyID;
}
static inline bool classof(const Value *V) {
return isa<Type>(V) && classof(cast<Type>(V));
}
};
// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
// These are defined here because they MUST be inlined, yet are dependent on
// the definition of the Type class. Of course Type derives from Value, which
// contains an AbstractTypeUser instance, so there is no good way to factor out
// the code. Hence this bit of uglyness.
//
inline void PATypeHandle::addUser() {
assert(Ty && "Type Handle has a null type!");
if (Ty->isAbstract())
cast<DerivedType>(Ty)->addAbstractTypeUser(User);
}
inline void PATypeHandle::removeUser() {
if (Ty->isAbstract())
cast<DerivedType>(Ty)->removeAbstractTypeUser(User);
}
inline void PATypeHandle::removeUserFromConcrete() {
if (!Ty->isAbstract())
cast<DerivedType>(Ty)->removeAbstractTypeUser(User);
}
// Define inline methods for PATypeHolder...
inline void PATypeHolder::addRef() {
if (Ty->isAbstract())
cast<DerivedType>(Ty)->addRef();
}
inline void PATypeHolder::dropRef() {
if (Ty->isAbstract())
cast<DerivedType>(Ty)->dropRef();
}
/// get - This implements the forwarding part of the union-find algorithm for
/// abstract types. Before every access to the Type*, we check to see if the
/// type we are pointing to is forwarding to a new type. If so, we drop our
/// reference to the type.
inline const Type* PATypeHolder::get() const {
const Type *NewTy = Ty->getForwardedType();
if (!NewTy) return Ty;
return *const_cast<PATypeHolder*>(this) = NewTy;
}
} // End llvm namespace
#endif