226 lines
8.1 KiB
C++
Raw Normal View History

//===- Steensgaard.cpp - Context Insensitive Alias Analysis ---------------===//
//
// This pass uses the data structure graphs to implement a simple context
// insensitive alias analysis. It does this by computing the local analysis
// graphs for all of the functions, then merging them together into a single big
// graph without cloning.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Analysis/DSGraph.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Module.h"
#include "Support/Statistic.h"
namespace {
class Steens : public Pass, public AliasAnalysis {
DSGraph *ResultGraph;
public:
Steens() : ResultGraph(0) {}
~Steens() { assert(ResultGraph == 0 && "releaseMemory not called?"); }
//------------------------------------------------
// Implement the Pass API
//
// run - Build up the result graph, representing the pointer graph for the
// program.
//
bool run(Module &M);
virtual void releaseMemory() { delete ResultGraph; ResultGraph = 0; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll(); // Does not transform code...
AU.addRequired<LocalDataStructures>(); // Uses local dsgraph
AU.addRequired<AliasAnalysis>(); // Chains to another AA impl...
}
// print - Implement the Pass::print method...
void print(std::ostream &O, const Module *M) const {
assert(ResultGraph && "Result graph has not yet been computed!");
ResultGraph->writeGraphToFile(O, "steensgaards");
}
//------------------------------------------------
// Implement the AliasAnalysis API
//
// alias - This is the only method here that does anything interesting...
Result alias(const Value *V1, const Value *V2) const;
/// canCallModify - We are not interprocedural, so we do nothing exciting.
///
Result canCallModify(const CallInst &CI, const Value *Ptr) const {
return MayAlias;
}
/// canInvokeModify - We are not interprocedural, so we do nothing exciting.
///
Result canInvokeModify(const InvokeInst &I, const Value *Ptr) const {
return MayAlias; // We are not interprocedural
}
private:
void ResolveFunctionCall(Function *F, const std::vector<DSNodeHandle> &Call,
DSNodeHandle &RetVal);
};
// Register the pass...
RegisterOpt<Steens> X("steens-aa",
"Steensgaard's FlowInsensitive/ConIns alias analysis");
// Register as an implementation of AliasAnalysis
RegisterAnalysisGroup<AliasAnalysis, Steens> Y;
}
/// ResolveFunctionCall - Resolve the actual arguments of a call to function F
/// with the specified call site descriptor. This function links the arguments
/// and the return value for the call site context-insensitively.
///
void Steens::ResolveFunctionCall(Function *F,
const std::vector<DSNodeHandle> &Call,
DSNodeHandle &RetVal) {
assert(ResultGraph != 0 && "Result graph not allocated!");
std::map<Value*, DSNodeHandle> &ValMap = ResultGraph->getValueMap();
// Handle the return value of the function... which is Call[0]
if (Call[0].getNode() && RetVal.getNode())
RetVal.mergeWith(Call[0]);
// Loop over all pointer arguments, resolving them to their provided pointers
unsigned ArgIdx = 2; // Skip retval and function to call...
for (Function::aiterator AI = F->abegin(), AE = F->aend(); AI != AE; ++AI) {
std::map<Value*, DSNodeHandle>::iterator I = ValMap.find(AI);
if (I != ValMap.end()) // If its a pointer argument...
I->second.addEdgeTo(Call[ArgIdx++]);
}
assert(ArgIdx == Call.size() && "Argument resolution mismatch!");
}
/// run - Build up the result graph, representing the pointer graph for the
/// program.
///
bool Steens::run(Module &M) {
assert(ResultGraph == 0 && "Result graph already allocated!");
LocalDataStructures &LDS = getAnalysis<LocalDataStructures>();
// Create a new, empty, graph...
ResultGraph = new DSGraph();
// RetValMap - Keep track of the return values for all functions that return
// valid pointers.
//
std::map<Function*, DSNodeHandle> RetValMap;
// Loop over the rest of the module, merging graphs for non-external functions
// into this graph.
//
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal()) {
std::map<Value*, DSNodeHandle> ValMap;
{ // Scope to free NodeMap memory ASAP
std::map<const DSNode*, DSNode*> NodeMap;
const DSGraph &FDSG = LDS.getDSGraph(*I);
DSNodeHandle RetNode = ResultGraph->cloneInto(FDSG, ValMap, NodeMap);
// Keep track of the return node of the function's graph if it returns a
// value...
//
if (RetNode.getNode())
RetValMap[I] = RetNode;
}
// Incorporate the inlined Function's ValueMap into the global ValueMap...
std::map<Value*, DSNodeHandle> &GVM = ResultGraph->getValueMap();
while (!ValMap.empty()) { // Loop over value map, moving entries over...
const std::pair<Value*, DSNodeHandle> &DSN = *ValMap.begin();
std::map<Value*, DSNodeHandle>::iterator I = GVM.find(DSN.first);
if (I == GVM.end())
GVM[DSN.first] = DSN.second;
else
I->second.mergeWith(DSN.second);
ValMap.erase(ValMap.begin());
}
}
// FIXME: Must recalculate and use the Incomplete markers!!
// Now that we have all of the graphs inlined, we can go about eliminating
// call nodes...
//
std::vector<std::vector<DSNodeHandle> > &Calls =
ResultGraph->getFunctionCalls();
for (unsigned i = 0; i != Calls.size(); ) {
std::vector<DSNodeHandle> &CurCall = Calls[i];
// Loop over the called functions, eliminating as many as possible...
std::vector<GlobalValue*> CallTargets = CurCall[1].getNode()->getGlobals();
for (unsigned c = 0; c != CallTargets.size(); ) {
// If we can eliminate this function call, do so!
bool Eliminated = false;
if (Function *F = dyn_cast<Function>(CallTargets[c]))
if (!F->isExternal()) {
ResolveFunctionCall(F, CurCall, RetValMap[F]);
Eliminated = true;
}
if (Eliminated)
CallTargets.erase(CallTargets.begin()+c);
else
++c; // Cannot eliminate this call, skip over it...
}
if (CallTargets.empty()) // Eliminated all calls?
Calls.erase(Calls.begin()+i); // Remove from call list...
else
++i; // Skip this call site...
}
// Update the "incomplete" markers on the nodes, ignoring unknownness due to
// incoming arguments...
ResultGraph->maskIncompleteMarkers();
ResultGraph->markIncompleteNodes(false);
// Remove any nodes that are dead after all of the merging we have done...
ResultGraph->removeTriviallyDeadNodes();
DEBUG(print(std::cerr, &M));
return false;
}
// alias - This is the only method here that does anything interesting...
AliasAnalysis::Result Steens::alias(const Value *V1, const Value *V2) const {
assert(ResultGraph && "Result grcaph has not yet been computed!");
std::map<Value*, DSNodeHandle> &GVM = ResultGraph->getValueMap();
std::map<Value*, DSNodeHandle>::iterator I = GVM.find(const_cast<Value*>(V1));
if (I != GVM.end() && I->second.getNode()) {
DSNodeHandle &V1H = I->second;
std::map<Value*, DSNodeHandle>::iterator J=GVM.find(const_cast<Value*>(V2));
if (J != GVM.end() && J->second.getNode()) {
DSNodeHandle &V2H = J->second;
// If the two pointers point to different data structure graph nodes, they
// cannot alias!
if (V1H.getNode() != V2H.getNode())
return NoAlias;
// FIXME: If the two pointers point to the same node, and the offsets are
// different, and the LinkIndex vector doesn't alias the section, then the
// two pointers do not alias. We need access size information for the two
// accesses though!
//
}
}
// If we cannot determine alias properties based on our graph, fall back on
// some other AA implementation.
//
return getAnalysis<AliasAnalysis>().alias(V1, V2);
}