llvm-6502/include/llvm/Analysis/MemoryDependenceAnalysis.h

226 lines
9.0 KiB
C
Raw Normal View History

//===- llvm/Analysis/MemoryDependenceAnalysis.h - Memory Deps --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the MemoryDependenceAnalysis analysis pass.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_MEMORY_DEPENDENCE_H
#define LLVM_ANALYSIS_MEMORY_DEPENDENCE_H
#include "llvm/BasicBlock.h"
#include "llvm/Pass.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/PointerIntPair.h"
namespace llvm {
class Function;
class FunctionPass;
class Instruction;
class CallSite;
class AliasAnalysis;
class TargetData;
class MemoryDependenceAnalysis;
/// MemDepResult - A memory dependence query can return one of three different
/// answers, described below.
class MemDepResult {
enum DepType {
/// Invalid - Clients of MemDep never see this.
Invalid = 0,
/// Normal - This is a normal instruction dependence. The pointer member
/// of the MemDepResult pair holds the instruction.
Normal,
/// NonLocal - This marker indicates that the query has no dependency in
/// the specified block. To find out more, the client should query other
/// predecessor blocks.
NonLocal,
/// None - This dependence type indicates that the query does not depend
/// on any instructions, either because it is not a memory instruction or
/// because it scanned to the definition of the memory (alloca/malloc)
/// being accessed.
None
};
typedef PointerIntPair<Instruction*, 2, DepType> PairTy;
PairTy Value;
explicit MemDepResult(PairTy V) : Value(V) {}
public:
MemDepResult() : Value(0, Invalid) {}
/// get methods: These are static ctor methods for creating various
/// MemDepResult kinds.
static MemDepResult get(Instruction *Inst) {
return MemDepResult(PairTy(Inst, Normal));
}
static MemDepResult getNonLocal() {
return MemDepResult(PairTy(0, NonLocal));
}
static MemDepResult getNone() {
return MemDepResult(PairTy(0, None));
}
/// isNormal - Return true if this MemDepResult represents a query that is
/// a normal instruction dependency.
bool isNormal() const { return Value.getInt() == Normal; }
/// isNonLocal - Return true if this MemDepResult represents an query that
/// is transparent to the start of the block, but where a non-local hasn't
/// been done.
bool isNonLocal() const { return Value.getInt() == NonLocal; }
/// isNone - Return true if this MemDepResult represents a query that
/// doesn't depend on any instruction.
bool isNone() const { return Value.getInt() == None; }
/// getInst() - If this is a normal dependency, return the instruction that
/// is depended on. Otherwise, return null.
Instruction *getInst() const { return Value.getPointer(); }
bool operator==(const MemDepResult &M) const { return M.Value == Value; }
bool operator!=(const MemDepResult &M) const { return M.Value != Value; }
bool operator<(const MemDepResult &M) const { return M.Value < Value; }
bool operator>(const MemDepResult &M) const { return M.Value > Value; }
private:
friend class MemoryDependenceAnalysis;
/// Dirty - Entries with this marker occur in a LocalDeps map or
/// NonLocalDeps map when the instruction they previously referenced was
/// removed from MemDep. In either case, the entry may include an
/// instruction pointer. If so, the pointer is an instruction in the
/// block where scanning can start from, saving some work.
///
/// In a default-constructed MemDepResult object, the type will be Dirty
/// and the instruction pointer will be null.
///
/// isDirty - Return true if this is a MemDepResult in its dirty/invalid.
/// state.
bool isDirty() const { return Value.getInt() == Invalid; }
static MemDepResult getDirty(Instruction *Inst) {
return MemDepResult(PairTy(Inst, Invalid));
}
};
/// MemoryDependenceAnalysis - This is an analysis that determines, for a
/// given memory operation, what preceding memory operations it depends on.
/// It builds on alias analysis information, and tries to provide a lazy,
/// caching interface to a common kind of alias information query.
///
/// The dependency information returned is somewhat unusual, but is pragmatic.
/// If queried about a store or call that might modify memory, the analysis
/// will return the instruction[s] that may either load from that memory or
/// store to it. If queried with a load or call that can never modify memory,
/// the analysis will return calls and stores that might modify the pointer,
/// but generally does not return loads unless a) they are volatile, or
/// b) they load from *must-aliased* pointers. Returning a dependence on
/// must-alias'd pointers instead of all pointers interacts well with the
/// internal caching mechanism.
///
class MemoryDependenceAnalysis : public FunctionPass {
// A map from instructions to their dependency.
typedef DenseMap<Instruction*, MemDepResult> LocalDepMapType;
LocalDepMapType LocalDeps;
public:
typedef std::pair<BasicBlock*, MemDepResult> NonLocalDepEntry;
typedef std::vector<NonLocalDepEntry> NonLocalDepInfo;
private:
/// PerInstNLInfo - This is the instruction we keep for each cached access
/// that we have for an instruction. The pointer is an owning pointer and
/// the bool indicates whether we have any dirty bits in the set.
typedef std::pair<NonLocalDepInfo, bool> PerInstNLInfo;
// A map from instructions to their non-local dependencies.
typedef DenseMap<Instruction*, PerInstNLInfo> NonLocalDepMapType;
NonLocalDepMapType NonLocalDeps;
// A reverse mapping from dependencies to the dependees. This is
// used when removing instructions to keep the cache coherent.
typedef DenseMap<Instruction*,
SmallPtrSet<Instruction*, 4> > ReverseDepMapType;
ReverseDepMapType ReverseLocalDeps;
// A reverse mapping form dependencies to the non-local dependees.
ReverseDepMapType ReverseNonLocalDeps;
/// Current AA implementation, just a cache.
AliasAnalysis *AA;
TargetData *TD;
public:
MemoryDependenceAnalysis() : FunctionPass(&ID) {}
static char ID;
/// Pass Implementation stuff. This doesn't do any analysis eagerly.
bool runOnFunction(Function &);
/// Clean up memory in between runs
void releaseMemory() {
LocalDeps.clear();
NonLocalDeps.clear();
NonLocalDeps.clear();
ReverseLocalDeps.clear();
ReverseNonLocalDeps.clear();
}
/// getAnalysisUsage - Does not modify anything. It uses Value Numbering
/// and Alias Analysis.
///
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
/// getDependency - Return the instruction on which a memory operation
/// depends. See the class comment for more details.
MemDepResult getDependency(Instruction *QueryInst);
/// getDependencyFrom - Return the instruction on which the memory operation
/// 'QueryInst' depends. This starts scanning from the instruction before
/// the position indicated by ScanIt.
///
/// Note that this method does no caching at all. You should use
/// getDependency where possible.
MemDepResult getDependencyFrom(Instruction *QueryInst,
BasicBlock::iterator ScanIt, BasicBlock *BB);
/// getNonLocalDependency - Perform a full dependency query for the
/// specified instruction, returning the set of blocks that the value is
/// potentially live across. The returned set of results will include a
/// "NonLocal" result for all blocks where the value is live across.
///
/// This method assumes the instruction returns a "NonLocal" dependency
/// within its own block.
///
/// This returns a reference to an internal data structure that may be
/// invalidated on the next non-local query or when an instruction is
/// removed. Clients must copy this data if they want it around longer than
/// that.
const NonLocalDepInfo &getNonLocalDependency(Instruction *QueryInst);
/// removeInstruction - Remove an instruction from the dependence analysis,
/// updating the dependence of instructions that previously depended on it.
void removeInstruction(Instruction *InstToRemove);
private:
/// verifyRemoved - Verify that the specified instruction does not occur
/// in our internal data structures.
void verifyRemoved(Instruction *Inst) const;
MemDepResult getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt,
BasicBlock *BB);
};
} // End llvm namespace
#endif