llvm-6502/utils/TableGen/IntrinsicEmitter.cpp

486 lines
17 KiB
C++
Raw Normal View History

//===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits information about intrinsic functions.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTarget.h"
#include "IntrinsicEmitter.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include <algorithm>
using namespace llvm;
//===----------------------------------------------------------------------===//
// IntrinsicEmitter Implementation
//===----------------------------------------------------------------------===//
void IntrinsicEmitter::run(std::ostream &OS) {
EmitSourceFileHeader("Intrinsic Function Source Fragment", OS);
std::vector<CodeGenIntrinsic> Ints = LoadIntrinsics(Records);
// Emit the enum information.
EmitEnumInfo(Ints, OS);
// Emit the intrinsic ID -> name table.
EmitIntrinsicToNameTable(Ints, OS);
// Emit the function name recognizer.
EmitFnNameRecognizer(Ints, OS);
// Emit the intrinsic verifier.
EmitVerifier(Ints, OS);
// Emit the intrinsic declaration generator.
EmitGenerator(Ints, OS);
// Emit the intrinsic parameter attributes.
EmitAttributes(Ints, OS);
// Emit a list of intrinsics with corresponding GCC builtins.
EmitGCCBuiltinList(Ints, OS);
// Emit code to translate GCC builtins into LLVM intrinsics.
EmitIntrinsicToGCCBuiltinMap(Ints, OS);
}
void IntrinsicEmitter::EmitEnumInfo(const std::vector<CodeGenIntrinsic> &Ints,
std::ostream &OS) {
OS << "// Enum values for Intrinsics.h\n";
OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n";
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
OS << " " << Ints[i].EnumName;
OS << ((i != e-1) ? ", " : " ");
OS << std::string(40-Ints[i].EnumName.size(), ' ')
<< "// " << Ints[i].Name << "\n";
}
OS << "#endif\n\n";
}
void IntrinsicEmitter::
EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> &Ints,
std::ostream &OS) {
// Build a function name -> intrinsic name mapping.
std::map<std::string, unsigned> IntMapping;
for (unsigned i = 0, e = Ints.size(); i != e; ++i)
IntMapping[Ints[i].Name] = i;
OS << "// Function name -> enum value recognizer code.\n";
OS << "#ifdef GET_FUNCTION_RECOGNIZER\n";
OS << " switch (Name[5]) {\n";
OS << " default:\n";
// Emit the intrinsics in sorted order.
char LastChar = 0;
for (std::map<std::string, unsigned>::iterator I = IntMapping.begin(),
E = IntMapping.end(); I != E; ++I) {
if (I->first[5] != LastChar) {
LastChar = I->first[5];
OS << " break;\n";
OS << " case '" << LastChar << "':\n";
}
// For overloaded intrinsics, only the prefix needs to match
if (Ints[I->second].isOverloaded)
OS << " if (Len > " << I->first.size()
<< " && !memcmp(Name, \"" << I->first << ".\", "
<< (I->first.size() + 1) << ")) return Intrinsic::"
<< Ints[I->second].EnumName << ";\n";
else
OS << " if (Len == " << I->first.size()
<< " && !memcmp(Name, \"" << I->first << "\", "
<< I->first.size() << ")) return Intrinsic::"
<< Ints[I->second].EnumName << ";\n";
}
OS << " }\n";
OS << "#endif\n\n";
}
void IntrinsicEmitter::
EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> &Ints,
std::ostream &OS) {
OS << "// Intrinsic ID to name table\n";
OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
OS << " // Note that entry #0 is the invalid intrinsic!\n";
for (unsigned i = 0, e = Ints.size(); i != e; ++i)
OS << " \"" << Ints[i].Name << "\",\n";
OS << "#endif\n\n";
}
static void EmitTypeForValueType(std::ostream &OS, MVT::ValueType VT) {
if (MVT::isInteger(VT)) {
unsigned BitWidth = MVT::getSizeInBits(VT);
OS << "IntegerType::get(" << BitWidth << ")";
} else if (VT == MVT::Other) {
// MVT::OtherVT is used to mean the empty struct type here.
OS << "StructType::get(std::vector<const Type *>())";
} else if (VT == MVT::f32) {
OS << "Type::FloatTy";
} else if (VT == MVT::f64) {
OS << "Type::DoubleTy";
} else if (VT == MVT::f80) {
OS << "Type::X86_FP80Ty";
} else if (VT == MVT::f128) {
OS << "Type::FP128Ty";
} else if (VT == MVT::ppcf128) {
OS << "Type::PPC_FP128Ty";
} else if (VT == MVT::isVoid) {
OS << "Type::VoidTy";
} else {
assert(false && "Unsupported ValueType!");
}
}
static void EmitTypeGenerate(std::ostream &OS, Record *ArgType,
unsigned &ArgNo) {
MVT::ValueType VT = getValueType(ArgType->getValueAsDef("VT"));
if (ArgType->isSubClassOf("LLVMMatchType")) {
unsigned Number = ArgType->getValueAsInt("Number");
assert(Number < ArgNo && "Invalid matching number!");
OS << "Tys[" << Number << "]";
} else if (VT == MVT::iAny || VT == MVT::fAny) {
// NOTE: The ArgNo variable here is not the absolute argument number, it is
// the index of the "arbitrary" type in the Tys array passed to the
// Intrinsic::getDeclaration function. Consequently, we only want to
// increment it when we actually hit an overloaded type. Getting this wrong
// leads to very subtle bugs!
OS << "Tys[" << ArgNo++ << "]";
} else if (MVT::isVector(VT)) {
OS << "VectorType::get(";
EmitTypeForValueType(OS, MVT::getVectorElementType(VT));
OS << ", " << MVT::getVectorNumElements(VT) << ")";
} else if (VT == MVT::iPTR) {
OS << "PointerType::getUnqual(";
EmitTypeGenerate(OS, ArgType->getValueAsDef("ElTy"), ArgNo);
OS << ")";
} else if (VT == MVT::isVoid) {
if (ArgNo == 0)
OS << "Type::VoidTy";
else
// MVT::isVoid is used to mean varargs here.
OS << "...";
} else {
EmitTypeForValueType(OS, VT);
}
}
/// RecordListComparator - Provide a determinstic comparator for lists of
/// records.
namespace {
struct RecordListComparator {
bool operator()(const std::vector<Record*> &LHS,
const std::vector<Record*> &RHS) const {
unsigned i = 0;
do {
if (i == RHS.size()) return false; // RHS is shorter than LHS.
if (LHS[i] != RHS[i])
return LHS[i]->getName() < RHS[i]->getName();
} while (++i != LHS.size());
return i != RHS.size();
}
};
}
void IntrinsicEmitter::EmitVerifier(const std::vector<CodeGenIntrinsic> &Ints,
std::ostream &OS) {
OS << "// Verifier::visitIntrinsicFunctionCall code.\n";
OS << "#ifdef GET_INTRINSIC_VERIFIER\n";
OS << " switch (ID) {\n";
OS << " default: assert(0 && \"Invalid intrinsic!\");\n";
// This checking can emit a lot of very common code. To reduce the amount of
// code that we emit, batch up cases that have identical types. This avoids
// problems where GCC can run out of memory compiling Verifier.cpp.
typedef std::map<std::vector<Record*>, std::vector<unsigned>,
RecordListComparator> MapTy;
MapTy UniqueArgInfos;
// Compute the unique argument type info.
for (unsigned i = 0, e = Ints.size(); i != e; ++i)
UniqueArgInfos[Ints[i].ArgTypeDefs].push_back(i);
// Loop through the array, emitting one comparison for each batch.
for (MapTy::iterator I = UniqueArgInfos.begin(),
E = UniqueArgInfos.end(); I != E; ++I) {
for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
OS << " case Intrinsic::" << Ints[I->second[i]].EnumName << ":\t\t// "
<< Ints[I->second[i]].Name << "\n";
}
const std::vector<Record*> &ArgTypes = I->first;
OS << " VerifyIntrinsicPrototype(ID, IF, " << ArgTypes.size() << ", ";
for (unsigned j = 0; j != ArgTypes.size(); ++j) {
Record *ArgType = ArgTypes[j];
if (ArgType->isSubClassOf("LLVMMatchType")) {
unsigned Number = ArgType->getValueAsInt("Number");
assert(Number < j && "Invalid matching number!");
OS << "~" << Number;
} else {
MVT::ValueType VT = getValueType(ArgType->getValueAsDef("VT"));
OS << getEnumName(VT);
if (VT == MVT::isVoid && j != 0 && j != ArgTypes.size()-1)
throw "Var arg type not last argument";
}
if (j != ArgTypes.size()-1)
OS << ", ";
}
OS << ");\n";
OS << " break;\n";
}
OS << " }\n";
OS << "#endif\n\n";
}
void IntrinsicEmitter::EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints,
std::ostream &OS) {
OS << "// Code for generating Intrinsic function declarations.\n";
OS << "#ifdef GET_INTRINSIC_GENERATOR\n";
OS << " switch (id) {\n";
OS << " default: assert(0 && \"Invalid intrinsic!\");\n";
// Similar to GET_INTRINSIC_VERIFIER, batch up cases that have identical
// types.
typedef std::map<std::vector<Record*>, std::vector<unsigned>,
RecordListComparator> MapTy;
MapTy UniqueArgInfos;
// Compute the unique argument type info.
for (unsigned i = 0, e = Ints.size(); i != e; ++i)
UniqueArgInfos[Ints[i].ArgTypeDefs].push_back(i);
// Loop through the array, emitting one generator for each batch.
for (MapTy::iterator I = UniqueArgInfos.begin(),
E = UniqueArgInfos.end(); I != E; ++I) {
for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
OS << " case Intrinsic::" << Ints[I->second[i]].EnumName << ":\t\t// "
<< Ints[I->second[i]].Name << "\n";
}
const std::vector<Record*> &ArgTypes = I->first;
unsigned N = ArgTypes.size();
if (N > 1 &&
getValueType(ArgTypes[N-1]->getValueAsDef("VT")) == MVT::isVoid) {
OS << " IsVarArg = true;\n";
--N;
}
unsigned ArgNo = 0;
OS << " ResultTy = ";
EmitTypeGenerate(OS, ArgTypes[0], ArgNo);
OS << ";\n";
for (unsigned j = 1; j != N; ++j) {
OS << " ArgTys.push_back(";
EmitTypeGenerate(OS, ArgTypes[j], ArgNo);
OS << ");\n";
}
OS << " break;\n";
}
OS << " }\n";
OS << "#endif\n\n";
}
void IntrinsicEmitter::
EmitAttributes(const std::vector<CodeGenIntrinsic> &Ints, std::ostream &OS) {
OS << "// Add parameter attributes that are not common to all intrinsics.\n";
OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
OS << " switch (id) {\n";
OS << " default: break;\n";
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
switch (Ints[i].ModRef) {
default: break;
case CodeGenIntrinsic::NoMem:
OS << " case Intrinsic::" << Ints[i].EnumName << ":\n";
break;
}
}
OS << " Attr |= ParamAttr::ReadNone; // These do not access memory.\n";
OS << " break;\n";
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
switch (Ints[i].ModRef) {
default: break;
case CodeGenIntrinsic::ReadArgMem:
case CodeGenIntrinsic::ReadMem:
OS << " case Intrinsic::" << Ints[i].EnumName << ":\n";
break;
}
}
OS << " Attr |= ParamAttr::ReadOnly; // These do not write memory.\n";
OS << " break;\n";
OS << " }\n";
OS << "#endif\n\n";
}
void IntrinsicEmitter::
EmitGCCBuiltinList(const std::vector<CodeGenIntrinsic> &Ints, std::ostream &OS){
OS << "// Get the GCC builtin that corresponds to an LLVM intrinsic.\n";
OS << "#ifdef GET_GCC_BUILTIN_NAME\n";
OS << " switch (F->getIntrinsicID()) {\n";
OS << " default: BuiltinName = \"\"; break;\n";
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
if (!Ints[i].GCCBuiltinName.empty()) {
OS << " case Intrinsic::" << Ints[i].EnumName << ": BuiltinName = \""
<< Ints[i].GCCBuiltinName << "\"; break;\n";
}
}
OS << " }\n";
OS << "#endif\n\n";
}
/// EmitBuiltinComparisons - Emit comparisons to determine whether the specified
/// sorted range of builtin names is equal to the current builtin. This breaks
/// it down into a simple tree.
///
/// At this point, we know that all the builtins in the range have the same name
/// for the first 'CharStart' characters. Only the end of the name needs to be
/// discriminated.
typedef std::map<std::string, std::string>::const_iterator StrMapIterator;
static void EmitBuiltinComparisons(StrMapIterator Start, StrMapIterator End,
unsigned CharStart, unsigned Indent,
std::ostream &OS) {
if (Start == End) return; // empty range.
// Determine what, if anything, is the same about all these strings.
std::string CommonString = Start->first;
unsigned NumInRange = 0;
for (StrMapIterator I = Start; I != End; ++I, ++NumInRange) {
// Find the first character that doesn't match.
const std::string &ThisStr = I->first;
unsigned NonMatchChar = CharStart;
while (NonMatchChar < CommonString.size() &&
NonMatchChar < ThisStr.size() &&
CommonString[NonMatchChar] == ThisStr[NonMatchChar])
++NonMatchChar;
// Truncate off pieces that don't match.
CommonString.resize(NonMatchChar);
}
// Just compare the rest of the string.
if (NumInRange == 1) {
if (CharStart != CommonString.size()) {
OS << std::string(Indent*2, ' ') << "if (!memcmp(BuiltinName";
if (CharStart) OS << "+" << CharStart;
OS << ", \"" << (CommonString.c_str()+CharStart) << "\", ";
OS << CommonString.size() - CharStart << "))\n";
++Indent;
}
OS << std::string(Indent*2, ' ') << "IntrinsicID = Intrinsic::";
OS << Start->second << ";\n";
return;
}
// At this point, we potentially have a common prefix for these builtins, emit
// a check for this common prefix.
if (CommonString.size() != CharStart) {
OS << std::string(Indent*2, ' ') << "if (!memcmp(BuiltinName";
if (CharStart) OS << "+" << CharStart;
OS << ", \"" << (CommonString.c_str()+CharStart) << "\", ";
OS << CommonString.size()-CharStart << ")) {\n";
EmitBuiltinComparisons(Start, End, CommonString.size(), Indent+1, OS);
OS << std::string(Indent*2, ' ') << "}\n";
return;
}
// Output a switch on the character that differs across the set.
OS << std::string(Indent*2, ' ') << "switch (BuiltinName[" << CharStart
<< "]) {";
if (CharStart)
OS << " // \"" << std::string(Start->first.begin(),
Start->first.begin()+CharStart) << "\"";
OS << "\n";
for (StrMapIterator I = Start; I != End; ) {
char ThisChar = I->first[CharStart];
OS << std::string(Indent*2, ' ') << "case '" << ThisChar << "':\n";
// Figure out the range that has this common character.
StrMapIterator NextChar = I;
for (++NextChar; NextChar != End && NextChar->first[CharStart] == ThisChar;
++NextChar)
/*empty*/;
EmitBuiltinComparisons(I, NextChar, CharStart+1, Indent+1, OS);
OS << std::string(Indent*2, ' ') << " break;\n";
I = NextChar;
}
OS << std::string(Indent*2, ' ') << "}\n";
}
/// EmitTargetBuiltins - All of the builtins in the specified map are for the
/// same target, and we already checked it.
static void EmitTargetBuiltins(const std::map<std::string, std::string> &BIM,
std::ostream &OS) {
// Rearrange the builtins by length.
std::vector<std::map<std::string, std::string> > BuiltinsByLen;
BuiltinsByLen.reserve(100);
for (StrMapIterator I = BIM.begin(), E = BIM.end(); I != E; ++I) {
if (I->first.size() >= BuiltinsByLen.size())
BuiltinsByLen.resize(I->first.size()+1);
BuiltinsByLen[I->first.size()].insert(*I);
}
// Now that we have all the builtins by their length, emit a switch stmt.
OS << " switch (strlen(BuiltinName)) {\n";
OS << " default: break;\n";
for (unsigned i = 0, e = BuiltinsByLen.size(); i != e; ++i) {
if (BuiltinsByLen[i].empty()) continue;
OS << " case " << i << ":\n";
EmitBuiltinComparisons(BuiltinsByLen[i].begin(), BuiltinsByLen[i].end(),
0, 3, OS);
OS << " break;\n";
}
OS << " }\n";
}
void IntrinsicEmitter::
EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints,
std::ostream &OS) {
typedef std::map<std::string, std::map<std::string, std::string> > BIMTy;
BIMTy BuiltinMap;
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
if (!Ints[i].GCCBuiltinName.empty()) {
// Get the map for this target prefix.
std::map<std::string, std::string> &BIM =BuiltinMap[Ints[i].TargetPrefix];
if (!BIM.insert(std::make_pair(Ints[i].GCCBuiltinName,
Ints[i].EnumName)).second)
throw "Intrinsic '" + Ints[i].TheDef->getName() +
"': duplicate GCC builtin name!";
}
}
OS << "// Get the LLVM intrinsic that corresponds to a GCC builtin.\n";
OS << "// This is used by the C front-end. The GCC builtin name is passed\n";
OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n";
OS << "#ifdef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN\n";
OS << " IntrinsicID = Intrinsic::not_intrinsic;\n";
// Note: this could emit significantly better code if we cared.
for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){
OS << " ";
if (!I->first.empty())
OS << "if (!strcmp(TargetPrefix, \"" << I->first << "\")) ";
else
OS << "/* Target Independent Builtins */ ";
OS << "{\n";
// Emit the comparisons for this target prefix.
EmitTargetBuiltins(I->second, OS);
OS << " }\n";
}
OS << "#endif\n\n";
}