2014-06-20 01:30:43 +00:00
|
|
|
//===- llvm/Support/ScaledNumber.h - Support for scaled numbers -*- C++ -*-===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file contains functions (and a class) useful for working with scaled
|
|
|
|
// numbers -- in particular, pairs of integers where one represents digits and
|
|
|
|
// another represents a scale. The functions are helpers and live in the
|
|
|
|
// namespace ScaledNumbers. The class ScaledNumber is useful for modelling
|
|
|
|
// certain cost metrics that need simple, integer-like semantics that are easy
|
|
|
|
// to reason about.
|
|
|
|
//
|
|
|
|
// These might remind you of soft-floats. If you want one of those, you're in
|
|
|
|
// the wrong place. Look at include/llvm/ADT/APFloat.h instead.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#ifndef LLVM_SUPPORT_SCALEDNUMBER_H
|
|
|
|
#define LLVM_SUPPORT_SCALEDNUMBER_H
|
|
|
|
|
2014-06-20 02:31:03 +00:00
|
|
|
#include "llvm/Support/MathExtras.h"
|
|
|
|
|
2014-06-23 20:40:45 +00:00
|
|
|
#include <algorithm>
|
2014-06-20 01:30:43 +00:00
|
|
|
#include <cstdint>
|
|
|
|
#include <limits>
|
|
|
|
#include <utility>
|
|
|
|
|
|
|
|
namespace llvm {
|
|
|
|
namespace ScaledNumbers {
|
|
|
|
|
|
|
|
/// \brief Get the width of a number.
|
|
|
|
template <class DigitsT> inline int getWidth() { return sizeof(DigitsT) * 8; }
|
|
|
|
|
|
|
|
/// \brief Conditionally round up a scaled number.
|
|
|
|
///
|
|
|
|
/// Given \c Digits and \c Scale, round up iff \c ShouldRound is \c true.
|
|
|
|
/// Always returns \c Scale unless there's an overflow, in which case it
|
|
|
|
/// returns \c 1+Scale.
|
|
|
|
///
|
|
|
|
/// \pre adding 1 to \c Scale will not overflow INT16_MAX.
|
|
|
|
template <class DigitsT>
|
|
|
|
inline std::pair<DigitsT, int16_t> getRounded(DigitsT Digits, int16_t Scale,
|
|
|
|
bool ShouldRound) {
|
|
|
|
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
|
|
|
|
|
|
|
|
if (ShouldRound)
|
|
|
|
if (!++Digits)
|
|
|
|
// Overflow.
|
|
|
|
return std::make_pair(DigitsT(1) << (getWidth<DigitsT>() - 1), Scale + 1);
|
|
|
|
return std::make_pair(Digits, Scale);
|
|
|
|
}
|
2014-06-20 02:31:03 +00:00
|
|
|
|
2014-06-20 02:31:07 +00:00
|
|
|
/// \brief Convenience helper for 32-bit rounding.
|
|
|
|
inline std::pair<uint32_t, int16_t> getRounded32(uint32_t Digits, int16_t Scale,
|
|
|
|
bool ShouldRound) {
|
|
|
|
return getRounded(Digits, Scale, ShouldRound);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Convenience helper for 64-bit rounding.
|
|
|
|
inline std::pair<uint64_t, int16_t> getRounded64(uint64_t Digits, int16_t Scale,
|
|
|
|
bool ShouldRound) {
|
|
|
|
return getRounded(Digits, Scale, ShouldRound);
|
|
|
|
}
|
|
|
|
|
2014-06-20 02:31:03 +00:00
|
|
|
/// \brief Adjust a 64-bit scaled number down to the appropriate width.
|
|
|
|
///
|
2014-06-20 21:44:36 +00:00
|
|
|
/// \pre Adding 64 to \c Scale will not overflow INT16_MAX.
|
2014-06-20 02:31:03 +00:00
|
|
|
template <class DigitsT>
|
|
|
|
inline std::pair<DigitsT, int16_t> getAdjusted(uint64_t Digits,
|
|
|
|
int16_t Scale = 0) {
|
|
|
|
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
|
|
|
|
|
|
|
|
const int Width = getWidth<DigitsT>();
|
|
|
|
if (Width == 64 || Digits <= std::numeric_limits<DigitsT>::max())
|
|
|
|
return std::make_pair(Digits, Scale);
|
|
|
|
|
|
|
|
// Shift right and round.
|
|
|
|
int Shift = 64 - Width - countLeadingZeros(Digits);
|
|
|
|
return getRounded<DigitsT>(Digits >> Shift, Scale + Shift,
|
|
|
|
Digits & (UINT64_C(1) << (Shift - 1)));
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Convenience helper for adjusting to 32 bits.
|
|
|
|
inline std::pair<uint32_t, int16_t> getAdjusted32(uint64_t Digits,
|
|
|
|
int16_t Scale = 0) {
|
|
|
|
return getAdjusted<uint32_t>(Digits, Scale);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Convenience helper for adjusting to 64 bits.
|
|
|
|
inline std::pair<uint64_t, int16_t> getAdjusted64(uint64_t Digits,
|
|
|
|
int16_t Scale = 0) {
|
|
|
|
return getAdjusted<uint64_t>(Digits, Scale);
|
|
|
|
}
|
2014-06-20 21:43:20 +00:00
|
|
|
|
2014-06-20 21:47:47 +00:00
|
|
|
/// \brief Multiply two 64-bit integers to create a 64-bit scaled number.
|
|
|
|
///
|
|
|
|
/// Implemented with four 64-bit integer multiplies.
|
|
|
|
std::pair<uint64_t, int16_t> multiply64(uint64_t LHS, uint64_t RHS);
|
|
|
|
|
|
|
|
/// \brief Multiply two 32-bit integers to create a 32-bit scaled number.
|
|
|
|
///
|
|
|
|
/// Implemented with one 64-bit integer multiply.
|
|
|
|
template <class DigitsT>
|
|
|
|
inline std::pair<DigitsT, int16_t> getProduct(DigitsT LHS, DigitsT RHS) {
|
|
|
|
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
|
|
|
|
|
|
|
|
if (getWidth<DigitsT>() <= 32 || (LHS <= UINT32_MAX && RHS <= UINT32_MAX))
|
|
|
|
return getAdjusted<DigitsT>(uint64_t(LHS) * RHS);
|
|
|
|
|
|
|
|
return multiply64(LHS, RHS);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Convenience helper for 32-bit product.
|
|
|
|
inline std::pair<uint32_t, int16_t> getProduct32(uint32_t LHS, uint32_t RHS) {
|
|
|
|
return getProduct(LHS, RHS);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Convenience helper for 64-bit product.
|
|
|
|
inline std::pair<uint64_t, int16_t> getProduct64(uint64_t LHS, uint64_t RHS) {
|
|
|
|
return getProduct(LHS, RHS);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Divide two 64-bit integers to create a 64-bit scaled number.
|
|
|
|
///
|
|
|
|
/// Implemented with long division.
|
|
|
|
///
|
|
|
|
/// \pre \c Dividend and \c Divisor are non-zero.
|
|
|
|
std::pair<uint64_t, int16_t> divide64(uint64_t Dividend, uint64_t Divisor);
|
|
|
|
|
|
|
|
/// \brief Divide two 32-bit integers to create a 32-bit scaled number.
|
|
|
|
///
|
|
|
|
/// Implemented with one 64-bit integer divide/remainder pair.
|
|
|
|
///
|
|
|
|
/// \pre \c Dividend and \c Divisor are non-zero.
|
|
|
|
std::pair<uint32_t, int16_t> divide32(uint32_t Dividend, uint32_t Divisor);
|
|
|
|
|
|
|
|
/// \brief Divide two 32-bit numbers to create a 32-bit scaled number.
|
|
|
|
///
|
|
|
|
/// Implemented with one 64-bit integer divide/remainder pair.
|
|
|
|
///
|
|
|
|
/// Returns \c (DigitsT_MAX, INT16_MAX) for divide-by-zero (0 for 0/0).
|
|
|
|
template <class DigitsT>
|
|
|
|
std::pair<DigitsT, int16_t> getQuotient(DigitsT Dividend, DigitsT Divisor) {
|
|
|
|
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
|
|
|
|
static_assert(sizeof(DigitsT) == 4 || sizeof(DigitsT) == 8,
|
|
|
|
"expected 32-bit or 64-bit digits");
|
|
|
|
|
|
|
|
// Check for zero.
|
|
|
|
if (!Dividend)
|
|
|
|
return std::make_pair(0, 0);
|
|
|
|
if (!Divisor)
|
|
|
|
return std::make_pair(std::numeric_limits<DigitsT>::max(), INT16_MAX);
|
|
|
|
|
|
|
|
if (getWidth<DigitsT>() == 64)
|
|
|
|
return divide64(Dividend, Divisor);
|
|
|
|
return divide32(Dividend, Divisor);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Convenience helper for 32-bit quotient.
|
|
|
|
inline std::pair<uint32_t, int16_t> getQuotient32(uint32_t Dividend,
|
|
|
|
uint32_t Divisor) {
|
|
|
|
return getQuotient(Dividend, Divisor);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Convenience helper for 64-bit quotient.
|
|
|
|
inline std::pair<uint64_t, int16_t> getQuotient64(uint64_t Dividend,
|
|
|
|
uint64_t Divisor) {
|
|
|
|
return getQuotient(Dividend, Divisor);
|
|
|
|
}
|
|
|
|
|
2014-06-20 22:33:40 +00:00
|
|
|
/// \brief Implementation of getLg() and friends.
|
|
|
|
///
|
|
|
|
/// Returns the rounded lg of \c Digits*2^Scale and an int specifying whether
|
|
|
|
/// this was rounded up (1), down (-1), or exact (0).
|
|
|
|
///
|
|
|
|
/// Returns \c INT32_MIN when \c Digits is zero.
|
|
|
|
template <class DigitsT>
|
|
|
|
inline std::pair<int32_t, int> getLgImpl(DigitsT Digits, int16_t Scale) {
|
|
|
|
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
|
|
|
|
|
|
|
|
if (!Digits)
|
|
|
|
return std::make_pair(INT32_MIN, 0);
|
|
|
|
|
|
|
|
// Get the floor of the lg of Digits.
|
|
|
|
int32_t LocalFloor = sizeof(Digits) * 8 - countLeadingZeros(Digits) - 1;
|
|
|
|
|
|
|
|
// Get the actual floor.
|
|
|
|
int32_t Floor = Scale + LocalFloor;
|
|
|
|
if (Digits == UINT64_C(1) << LocalFloor)
|
|
|
|
return std::make_pair(Floor, 0);
|
|
|
|
|
|
|
|
// Round based on the next digit.
|
|
|
|
assert(LocalFloor >= 1);
|
|
|
|
bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
|
|
|
|
return std::make_pair(Floor + Round, Round ? 1 : -1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Get the lg (rounded) of a scaled number.
|
|
|
|
///
|
|
|
|
/// Get the lg of \c Digits*2^Scale.
|
|
|
|
///
|
|
|
|
/// Returns \c INT32_MIN when \c Digits is zero.
|
|
|
|
template <class DigitsT> int32_t getLg(DigitsT Digits, int16_t Scale) {
|
|
|
|
return getLgImpl(Digits, Scale).first;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Get the lg floor of a scaled number.
|
|
|
|
///
|
|
|
|
/// Get the floor of the lg of \c Digits*2^Scale.
|
|
|
|
///
|
|
|
|
/// Returns \c INT32_MIN when \c Digits is zero.
|
|
|
|
template <class DigitsT> int32_t getLgFloor(DigitsT Digits, int16_t Scale) {
|
|
|
|
auto Lg = getLgImpl(Digits, Scale);
|
|
|
|
return Lg.first - (Lg.second > 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Get the lg ceiling of a scaled number.
|
|
|
|
///
|
|
|
|
/// Get the ceiling of the lg of \c Digits*2^Scale.
|
|
|
|
///
|
|
|
|
/// Returns \c INT32_MIN when \c Digits is zero.
|
|
|
|
template <class DigitsT> int32_t getLgCeiling(DigitsT Digits, int16_t Scale) {
|
|
|
|
auto Lg = getLgImpl(Digits, Scale);
|
|
|
|
return Lg.first + (Lg.second < 0);
|
|
|
|
}
|
|
|
|
|
2014-06-23 17:47:40 +00:00
|
|
|
/// \brief Implementation for comparing scaled numbers.
|
|
|
|
///
|
|
|
|
/// Compare two 64-bit numbers with different scales. Given that the scale of
|
|
|
|
/// \c L is higher than that of \c R by \c ScaleDiff, compare them. Return -1,
|
|
|
|
/// 1, and 0 for less than, greater than, and equal, respectively.
|
|
|
|
///
|
|
|
|
/// \pre 0 <= ScaleDiff < 64.
|
|
|
|
int compareImpl(uint64_t L, uint64_t R, int ScaleDiff);
|
|
|
|
|
|
|
|
/// \brief Compare two scaled numbers.
|
|
|
|
///
|
|
|
|
/// Compare two scaled numbers. Returns 0 for equal, -1 for less than, and 1
|
|
|
|
/// for greater than.
|
|
|
|
template <class DigitsT>
|
|
|
|
int compare(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale) {
|
2014-06-23 18:08:58 +00:00
|
|
|
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
|
|
|
|
|
2014-06-23 17:47:40 +00:00
|
|
|
// Check for zero.
|
|
|
|
if (!LDigits)
|
|
|
|
return RDigits ? -1 : 0;
|
|
|
|
if (!RDigits)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
// Check for the scale. Use getLgFloor to be sure that the scale difference
|
|
|
|
// is always lower than 64.
|
|
|
|
int32_t lgL = getLgFloor(LDigits, LScale), lgR = getLgFloor(RDigits, RScale);
|
|
|
|
if (lgL != lgR)
|
|
|
|
return lgL < lgR ? -1 : 1;
|
|
|
|
|
|
|
|
// Compare digits.
|
|
|
|
if (LScale < RScale)
|
|
|
|
return compareImpl(LDigits, RDigits, RScale - LScale);
|
|
|
|
|
|
|
|
return -compareImpl(RDigits, LDigits, LScale - RScale);
|
|
|
|
}
|
|
|
|
|
2014-06-23 20:40:45 +00:00
|
|
|
/// \brief Match scales of two numbers.
|
|
|
|
///
|
|
|
|
/// Given two scaled numbers, match up their scales. Change the digits and
|
|
|
|
/// scales in place. Shift the digits as necessary to form equivalent numbers,
|
|
|
|
/// losing precision only when necessary.
|
|
|
|
///
|
|
|
|
/// If the output value of \c LDigits (\c RDigits) is \c 0, the output value of
|
|
|
|
/// \c LScale (\c RScale) is unspecified. If both \c LDigits and \c RDigits
|
|
|
|
/// are \c 0, the output value is one of \c LScale and \c RScale; which is
|
|
|
|
/// unspecified.
|
|
|
|
template <class DigitsT>
|
|
|
|
void matchScales(DigitsT &LDigits, int16_t &LScale, DigitsT &RDigits,
|
|
|
|
int16_t &RScale) {
|
|
|
|
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
|
|
|
|
|
|
|
|
if (LScale < RScale) {
|
|
|
|
// Swap arguments.
|
|
|
|
matchScales(RDigits, RScale, LDigits, LScale);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (!LDigits || !RDigits || LScale == RScale)
|
|
|
|
return;
|
|
|
|
|
|
|
|
// Now LScale > RScale. Get the difference.
|
|
|
|
int32_t ScaleDiff = int32_t(LScale) - RScale;
|
|
|
|
if (ScaleDiff >= 2 * getWidth<DigitsT>()) {
|
|
|
|
// Don't bother shifting. RDigits will get zero-ed out anyway.
|
|
|
|
RDigits = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Shift LDigits left as much as possible, then shift RDigits right.
|
|
|
|
int32_t ShiftL = std::min<int32_t>(countLeadingZeros(LDigits), ScaleDiff);
|
|
|
|
assert(ShiftL < getWidth<DigitsT>() && "can't shift more than width");
|
|
|
|
|
|
|
|
int32_t ShiftR = ScaleDiff - ShiftL;
|
|
|
|
if (ShiftR >= getWidth<DigitsT>()) {
|
|
|
|
// Don't bother shifting. RDigits will get zero-ed out anyway.
|
|
|
|
RDigits = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
LDigits <<= ShiftL;
|
|
|
|
RDigits >>= ShiftR;
|
|
|
|
|
|
|
|
LScale -= ShiftL;
|
|
|
|
RScale += ShiftR;
|
|
|
|
assert(LScale == RScale && "scales should match");
|
|
|
|
}
|
|
|
|
|
2014-06-20 21:43:20 +00:00
|
|
|
} // end namespace ScaledNumbers
|
|
|
|
} // end namespace llvm
|
2014-06-20 01:30:43 +00:00
|
|
|
|
|
|
|
#endif
|