llvm-6502/include/llvm/Analysis/AliasAnalysis.h

618 lines
26 KiB
C
Raw Normal View History

//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the generic AliasAnalysis interface, which is used as the
// common interface used by all clients of alias analysis information, and
// implemented by all alias analysis implementations. Mod/Ref information is
// also captured by this interface.
//
// Implementations of this interface must implement the various virtual methods,
// which automatically provides functionality for the entire suite of client
// APIs.
//
// This API identifies memory regions with the Location class. The pointer
// component specifies the base memory address of the region. The Size specifies
// the maximum size (in address units) of the memory region, or UnknownSize if
// the size is not known. The TBAA tag identifies the "type" of the memory
// reference; see the TypeBasedAliasAnalysis class for details.
//
// Some non-obvious details include:
// - Pointers that point to two completely different objects in memory never
// alias, regardless of the value of the Size component.
// - NoAlias doesn't imply inequal pointers. The most obvious example of this
// is two pointers to constant memory. Even if they are equal, constant
// memory is never stored to, so there will never be any dependencies.
// In this and other situations, the pointers may be both NoAlias and
// MustAlias at the same time. The current API can only return one result,
// though this is rarely a problem in practice.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
#define LLVM_ANALYSIS_ALIASANALYSIS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Metadata.h"
namespace llvm {
class LoadInst;
class StoreInst;
class VAArgInst;
class DataLayout;
class TargetLibraryInfo;
class Pass;
class AnalysisUsage;
class MemTransferInst;
class MemIntrinsic;
class DominatorTree;
class AliasAnalysis {
protected:
const DataLayout *DL;
const TargetLibraryInfo *TLI;
private:
AliasAnalysis *AA; // Previous Alias Analysis to chain to.
protected:
/// InitializeAliasAnalysis - Subclasses must call this method to initialize
/// the AliasAnalysis interface before any other methods are called. This is
/// typically called by the run* methods of these subclasses. This may be
/// called multiple times.
///
void InitializeAliasAnalysis(Pass *P);
/// getAnalysisUsage - All alias analysis implementations should invoke this
/// directly (using AliasAnalysis::getAnalysisUsage(AU)).
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
public:
static char ID; // Class identification, replacement for typeinfo
AliasAnalysis() : DL(nullptr), TLI(nullptr), AA(nullptr) {}
virtual ~AliasAnalysis(); // We want to be subclassed
/// UnknownSize - This is a special value which can be used with the
/// size arguments in alias queries to indicate that the caller does not
/// know the sizes of the potential memory references.
static uint64_t const UnknownSize = ~UINT64_C(0);
/// getDataLayout - Return a pointer to the current DataLayout object, or
/// null if no DataLayout object is available.
///
const DataLayout *getDataLayout() const { return DL; }
/// getTargetLibraryInfo - Return a pointer to the current TargetLibraryInfo
/// object, or null if no TargetLibraryInfo object is available.
///
const TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
/// getTypeStoreSize - Return the DataLayout store size for the given type,
/// if known, or a conservative value otherwise.
///
uint64_t getTypeStoreSize(Type *Ty);
//===--------------------------------------------------------------------===//
/// Alias Queries...
///
/// Location - A description of a memory location.
struct Location {
/// Ptr - The address of the start of the location.
const Value *Ptr;
/// Size - The maximum size of the location, in address-units, or
/// UnknownSize if the size is not known. Note that an unknown size does
/// not mean the pointer aliases the entire virtual address space, because
/// there are restrictions on stepping out of one object and into another.
/// See http://llvm.org/docs/LangRef.html#pointeraliasing
uint64_t Size;
/// AATags - The metadata nodes which describes the aliasing of the
/// location (each member is null if that kind of information is
/// unavailable)..
AAMDNodes AATags;
explicit Location(const Value *P = nullptr, uint64_t S = UnknownSize,
const AAMDNodes &N = AAMDNodes())
: Ptr(P), Size(S), AATags(N) {}
Location getWithNewPtr(const Value *NewPtr) const {
Location Copy(*this);
Copy.Ptr = NewPtr;
return Copy;
}
Location getWithNewSize(uint64_t NewSize) const {
Location Copy(*this);
Copy.Size = NewSize;
return Copy;
}
Location getWithoutAATags() const {
Location Copy(*this);
Copy.AATags = AAMDNodes();
return Copy;
}
};
/// getLocation - Fill in Loc with information about the memory reference by
/// the given instruction.
Location getLocation(const LoadInst *LI);
Location getLocation(const StoreInst *SI);
Location getLocation(const VAArgInst *VI);
Location getLocation(const AtomicCmpXchgInst *CXI);
Location getLocation(const AtomicRMWInst *RMWI);
static Location getLocationForSource(const MemTransferInst *MTI);
static Location getLocationForDest(const MemIntrinsic *MI);
/// Alias analysis result - Either we know for sure that it does not alias, we
/// know for sure it must alias, or we don't know anything: The two pointers
/// _might_ alias. This enum is designed so you can do things like:
/// if (AA.alias(P1, P2)) { ... }
/// to check to see if two pointers might alias.
///
/// See docs/AliasAnalysis.html for more information on the specific meanings
/// of these values.
///
enum AliasResult {
NoAlias = 0, ///< No dependencies.
MayAlias, ///< Anything goes.
PartialAlias, ///< Pointers differ, but pointees overlap.
MustAlias ///< Pointers are equal.
};
/// alias - The main low level interface to the alias analysis implementation.
/// Returns an AliasResult indicating whether the two pointers are aliased to
/// each other. This is the interface that must be implemented by specific
/// alias analysis implementations.
virtual AliasResult alias(const Location &LocA, const Location &LocB);
/// alias - A convenience wrapper.
AliasResult alias(const Value *V1, uint64_t V1Size,
const Value *V2, uint64_t V2Size) {
return alias(Location(V1, V1Size), Location(V2, V2Size));
}
/// alias - A convenience wrapper.
AliasResult alias(const Value *V1, const Value *V2) {
return alias(V1, UnknownSize, V2, UnknownSize);
}
/// isNoAlias - A trivial helper function to check to see if the specified
/// pointers are no-alias.
bool isNoAlias(const Location &LocA, const Location &LocB) {
return alias(LocA, LocB) == NoAlias;
}
/// isNoAlias - A convenience wrapper.
bool isNoAlias(const Value *V1, uint64_t V1Size,
const Value *V2, uint64_t V2Size) {
return isNoAlias(Location(V1, V1Size), Location(V2, V2Size));
}
/// isNoAlias - A convenience wrapper.
bool isNoAlias(const Value *V1, const Value *V2) {
return isNoAlias(Location(V1), Location(V2));
}
/// isMustAlias - A convenience wrapper.
bool isMustAlias(const Location &LocA, const Location &LocB) {
return alias(LocA, LocB) == MustAlias;
}
/// isMustAlias - A convenience wrapper.
bool isMustAlias(const Value *V1, const Value *V2) {
return alias(V1, 1, V2, 1) == MustAlias;
}
/// pointsToConstantMemory - If the specified memory location is
/// known to be constant, return true. If OrLocal is true and the
/// specified memory location is known to be "local" (derived from
/// an alloca), return true. Otherwise return false.
virtual bool pointsToConstantMemory(const Location &Loc,
bool OrLocal = false);
/// pointsToConstantMemory - A convenient wrapper.
bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
return pointsToConstantMemory(Location(P), OrLocal);
}
//===--------------------------------------------------------------------===//
/// Simple mod/ref information...
///
/// ModRefResult - Represent the result of a mod/ref query. Mod and Ref are
/// bits which may be or'd together.
///
enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
/// These values define additional bits used to define the
/// ModRefBehavior values.
enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees };
/// ModRefBehavior - Summary of how a function affects memory in the program.
/// Loads from constant globals are not considered memory accesses for this
/// interface. Also, functions may freely modify stack space local to their
/// invocation without having to report it through these interfaces.
enum ModRefBehavior {
/// DoesNotAccessMemory - This function does not perform any non-local loads
/// or stores to memory.
///
/// This property corresponds to the GCC 'const' attribute.
/// This property corresponds to the LLVM IR 'readnone' attribute.
/// This property corresponds to the IntrNoMem LLVM intrinsic flag.
DoesNotAccessMemory = Nowhere | NoModRef,
/// OnlyReadsArgumentPointees - The only memory references in this function
/// (if it has any) are non-volatile loads from objects pointed to by its
/// pointer-typed arguments, with arbitrary offsets.
///
/// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
OnlyReadsArgumentPointees = ArgumentPointees | Ref,
/// OnlyAccessesArgumentPointees - The only memory references in this
/// function (if it has any) are non-volatile loads and stores from objects
/// pointed to by its pointer-typed arguments, with arbitrary offsets.
///
/// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
OnlyAccessesArgumentPointees = ArgumentPointees | ModRef,
/// OnlyReadsMemory - This function does not perform any non-local stores or
/// volatile loads, but may read from any memory location.
///
/// This property corresponds to the GCC 'pure' attribute.
/// This property corresponds to the LLVM IR 'readonly' attribute.
/// This property corresponds to the IntrReadMem LLVM intrinsic flag.
OnlyReadsMemory = Anywhere | Ref,
/// UnknownModRefBehavior - This indicates that the function could not be
/// classified into one of the behaviors above.
UnknownModRefBehavior = Anywhere | ModRef
};
Improve BasicAA CS-CS queries (redux) This reverts, "r213024 - Revert r212572 "improve BasicAA CS-CS queries", it causes PR20303." with a fix for the bug in pr20303. As it turned out, the relevant code was both wrong and over-conservative (because, as with the code it replaced, it would return the overall ModRef mask even if just Ref had been implied by the argument aliasing results). Hopefully, this correctly fixes both problems. Thanks to Nick Lewycky for reducing the test case for pr20303 (which I've cleaned up a little and added in DSE's test directory). The BasicAA test has also been updated to check for this error. Original commit message: BasicAA contains knowledge of certain intrinsics, such as memcpy and memset, and uses that information to form more-accurate answers to CallSite vs. Loc ModRef queries. Unfortunately, it did not use this information when answering CallSite vs. CallSite queries. Generically, when an intrinsic takes one or more pointers and the intrinsic is marked only to read/write from its arguments, the offset/size is unknown. As a result, the generic code that answers CallSite vs. CallSite (and CallSite vs. Loc) queries in AA uses UnknownSize when forming Locs from an intrinsic's arguments. While BasicAA's CallSite vs. Loc override could use more-accurate size information for some intrinsics, it did not do the same for CallSite vs. CallSite queries. This change refactors the intrinsic-specific logic in BasicAA into a generic AA query function: getArgLocation, which is overridden by BasicAA to supply the intrinsic-specific knowledge, and used by AA's generic implementation. This allows the intrinsic-specific knowledge to be used by both CallSite vs. Loc and CallSite vs. CallSite queries, and simplifies the BasicAA implementation. Currently, only one function, Mac's memset_pattern16, is handled by BasicAA (all the rest are intrinsics). As a side-effect of this refactoring, BasicAA's getModRefBehavior override now also returns OnlyAccessesArgumentPointees for this function (which is an improvement). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213219 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-17 01:28:25 +00:00
/// Get the location associated with a pointer argument of a callsite.
/// The mask bits are set to indicate the allowed aliasing ModRef kinds.
/// Note that these mask bits do not necessarily account for the overall
/// behavior of the function, but rather only provide additional
/// per-argument information.
virtual Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
ModRefResult &Mask);
/// getModRefBehavior - Return the behavior when calling the given call site.
virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
/// getModRefBehavior - Return the behavior when calling the given function.
/// For use when the call site is not known.
virtual ModRefBehavior getModRefBehavior(const Function *F);
/// doesNotAccessMemory - If the specified call is known to never read or
/// write memory, return true. If the call only reads from known-constant
/// memory, it is also legal to return true. Calls that unwind the stack
/// are legal for this predicate.
///
/// Many optimizations (such as CSE and LICM) can be performed on such calls
/// without worrying about aliasing properties, and many calls have this
/// property (e.g. calls to 'sin' and 'cos').
///
/// This property corresponds to the GCC 'const' attribute.
///
bool doesNotAccessMemory(ImmutableCallSite CS) {
return getModRefBehavior(CS) == DoesNotAccessMemory;
}
/// doesNotAccessMemory - If the specified function is known to never read or
/// write memory, return true. For use when the call site is not known.
///
bool doesNotAccessMemory(const Function *F) {
return getModRefBehavior(F) == DoesNotAccessMemory;
}
/// onlyReadsMemory - If the specified call is known to only read from
/// non-volatile memory (or not access memory at all), return true. Calls
/// that unwind the stack are legal for this predicate.
///
/// This property allows many common optimizations to be performed in the
/// absence of interfering store instructions, such as CSE of strlen calls.
///
/// This property corresponds to the GCC 'pure' attribute.
///
bool onlyReadsMemory(ImmutableCallSite CS) {
return onlyReadsMemory(getModRefBehavior(CS));
}
/// onlyReadsMemory - If the specified function is known to only read from
/// non-volatile memory (or not access memory at all), return true. For use
/// when the call site is not known.
///
bool onlyReadsMemory(const Function *F) {
return onlyReadsMemory(getModRefBehavior(F));
}
/// onlyReadsMemory - Return true if functions with the specified behavior are
/// known to only read from non-volatile memory (or not access memory at all).
///
static bool onlyReadsMemory(ModRefBehavior MRB) {
return !(MRB & Mod);
}
/// onlyAccessesArgPointees - Return true if functions with the specified
/// behavior are known to read and write at most from objects pointed to by
/// their pointer-typed arguments (with arbitrary offsets).
///
static bool onlyAccessesArgPointees(ModRefBehavior MRB) {
return !(MRB & Anywhere & ~ArgumentPointees);
}
/// doesAccessArgPointees - Return true if functions with the specified
/// behavior are known to potentially read or write from objects pointed
/// to be their pointer-typed arguments (with arbitrary offsets).
///
static bool doesAccessArgPointees(ModRefBehavior MRB) {
return (MRB & ModRef) && (MRB & ArgumentPointees);
}
/// getModRefInfo - Return information about whether or not an instruction may
/// read or write the specified memory location. An instruction
/// that doesn't read or write memory may be trivially LICM'd for example.
ModRefResult getModRefInfo(const Instruction *I,
const Location &Loc) {
switch (I->getOpcode()) {
case Instruction::VAArg: return getModRefInfo((const VAArgInst*)I, Loc);
case Instruction::Load: return getModRefInfo((const LoadInst*)I, Loc);
case Instruction::Store: return getModRefInfo((const StoreInst*)I, Loc);
case Instruction::Fence: return getModRefInfo((const FenceInst*)I, Loc);
case Instruction::AtomicCmpXchg:
return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
case Instruction::AtomicRMW:
return getModRefInfo((const AtomicRMWInst*)I, Loc);
case Instruction::Call: return getModRefInfo((const CallInst*)I, Loc);
case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
default: return NoModRef;
}
}
/// getModRefInfo - A convenience wrapper.
ModRefResult getModRefInfo(const Instruction *I,
const Value *P, uint64_t Size) {
return getModRefInfo(I, Location(P, Size));
}
/// getModRefInfo (for call sites) - Return information about whether
/// a particular call site modifies or reads the specified memory location.
virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
const Location &Loc);
/// getModRefInfo (for call sites) - A convenience wrapper.
ModRefResult getModRefInfo(ImmutableCallSite CS,
const Value *P, uint64_t Size) {
return getModRefInfo(CS, Location(P, Size));
}
/// getModRefInfo (for calls) - Return information about whether
/// a particular call modifies or reads the specified memory location.
ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) {
return getModRefInfo(ImmutableCallSite(C), Loc);
}
/// getModRefInfo (for calls) - A convenience wrapper.
ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
return getModRefInfo(C, Location(P, Size));
}
/// getModRefInfo (for invokes) - Return information about whether
/// a particular invoke modifies or reads the specified memory location.
ModRefResult getModRefInfo(const InvokeInst *I,
const Location &Loc) {
return getModRefInfo(ImmutableCallSite(I), Loc);
}
/// getModRefInfo (for invokes) - A convenience wrapper.
ModRefResult getModRefInfo(const InvokeInst *I,
const Value *P, uint64_t Size) {
return getModRefInfo(I, Location(P, Size));
}
/// getModRefInfo (for loads) - Return information about whether
/// a particular load modifies or reads the specified memory location.
ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc);
/// getModRefInfo (for loads) - A convenience wrapper.
ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
return getModRefInfo(L, Location(P, Size));
}
/// getModRefInfo (for stores) - Return information about whether
/// a particular store modifies or reads the specified memory location.
ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc);
/// getModRefInfo (for stores) - A convenience wrapper.
ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size){
return getModRefInfo(S, Location(P, Size));
}
/// getModRefInfo (for fences) - Return information about whether
/// a particular store modifies or reads the specified memory location.
ModRefResult getModRefInfo(const FenceInst *S, const Location &Loc) {
// Conservatively correct. (We could possibly be a bit smarter if
// Loc is a alloca that doesn't escape.)
return ModRef;
}
/// getModRefInfo (for fences) - A convenience wrapper.
ModRefResult getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size){
return getModRefInfo(S, Location(P, Size));
}
/// getModRefInfo (for cmpxchges) - Return information about whether
/// a particular cmpxchg modifies or reads the specified memory location.
ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc);
/// getModRefInfo (for cmpxchges) - A convenience wrapper.
ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX,
const Value *P, unsigned Size) {
return getModRefInfo(CX, Location(P, Size));
}
/// getModRefInfo (for atomicrmws) - Return information about whether
/// a particular atomicrmw modifies or reads the specified memory location.
ModRefResult getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc);
/// getModRefInfo (for atomicrmws) - A convenience wrapper.
ModRefResult getModRefInfo(const AtomicRMWInst *RMW,
const Value *P, unsigned Size) {
return getModRefInfo(RMW, Location(P, Size));
}
/// getModRefInfo (for va_args) - Return information about whether
/// a particular va_arg modifies or reads the specified memory location.
ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc);
/// getModRefInfo (for va_args) - A convenience wrapper.
ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size){
return getModRefInfo(I, Location(P, Size));
}
/// getModRefInfo - Return information about whether two call sites may refer
/// to the same set of memory locations. See
/// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
/// for details.
virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2);
/// callCapturesBefore - Return information about whether a particular call
/// site modifies or reads the specified memory location.
ModRefResult callCapturesBefore(const Instruction *I,
const AliasAnalysis::Location &MemLoc,
DominatorTree *DT);
/// callCapturesBefore - A convenience wrapper.
ModRefResult callCapturesBefore(const Instruction *I, const Value *P,
uint64_t Size, DominatorTree *DT) {
return callCapturesBefore(I, Location(P, Size), DT);
}
//===--------------------------------------------------------------------===//
/// Higher level methods for querying mod/ref information.
///
/// canBasicBlockModify - Return true if it is possible for execution of the
/// specified basic block to modify the value pointed to by Ptr.
bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc);
/// canBasicBlockModify - A convenience wrapper.
bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){
return canBasicBlockModify(BB, Location(P, Size));
}
/// canInstructionRangeModify - Return true if it is possible for the
/// execution of the specified instructions to modify the value pointed to by
/// Ptr. The instructions to consider are all of the instructions in the
/// range of [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
const Location &Loc);
/// canInstructionRangeModify - A convenience wrapper.
bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
const Value *Ptr, uint64_t Size) {
return canInstructionRangeModify(I1, I2, Location(Ptr, Size));
}
//===--------------------------------------------------------------------===//
/// Methods that clients should call when they transform the program to allow
/// alias analyses to update their internal data structures. Note that these
/// methods may be called on any instruction, regardless of whether or not
/// they have pointer-analysis implications.
///
/// deleteValue - This method should be called whenever an LLVM Value is
/// deleted from the program, for example when an instruction is found to be
/// redundant and is eliminated.
///
virtual void deleteValue(Value *V);
/// copyValue - This method should be used whenever a preexisting value in the
/// program is copied or cloned, introducing a new value. Note that analysis
/// implementations should tolerate clients that use this method to introduce
/// the same value multiple times: if the analysis already knows about a
/// value, it should ignore the request.
///
virtual void copyValue(Value *From, Value *To);
/// addEscapingUse - This method should be used whenever an escaping use is
/// added to a pointer value. Analysis implementations may either return
/// conservative responses for that value in the future, or may recompute
/// some or all internal state to continue providing precise responses.
///
/// Escaping uses are considered by anything _except_ the following:
/// - GEPs or bitcasts of the pointer
/// - Loads through the pointer
/// - Stores through (but not of) the pointer
virtual void addEscapingUse(Use &U);
/// replaceWithNewValue - This method is the obvious combination of the two
/// above, and it provided as a helper to simplify client code.
///
void replaceWithNewValue(Value *Old, Value *New) {
copyValue(Old, New);
deleteValue(Old);
}
};
// Specialize DenseMapInfo for Location.
template<>
struct DenseMapInfo<AliasAnalysis::Location> {
static inline AliasAnalysis::Location getEmptyKey() {
return AliasAnalysis::Location(DenseMapInfo<const Value *>::getEmptyKey(),
0);
}
static inline AliasAnalysis::Location getTombstoneKey() {
return AliasAnalysis::Location(
DenseMapInfo<const Value *>::getTombstoneKey(), 0);
}
static unsigned getHashValue(const AliasAnalysis::Location &Val) {
return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
DenseMapInfo<uint64_t>::getHashValue(Val.Size) ^
DenseMapInfo<AAMDNodes>::getHashValue(Val.AATags);
}
static bool isEqual(const AliasAnalysis::Location &LHS,
const AliasAnalysis::Location &RHS) {
return LHS.Ptr == RHS.Ptr &&
LHS.Size == RHS.Size &&
LHS.AATags == RHS.AATags;
}
};
/// isNoAliasCall - Return true if this pointer is returned by a noalias
/// function.
bool isNoAliasCall(const Value *V);
/// isNoAliasArgument - Return true if this is an argument with the noalias
/// attribute.
bool isNoAliasArgument(const Value *V);
/// isIdentifiedObject - Return true if this pointer refers to a distinct and
/// identifiable object. This returns true for:
/// Global Variables and Functions (but not Global Aliases)
/// Allocas
/// ByVal and NoAlias Arguments
/// NoAlias returns (e.g. calls to malloc)
///
bool isIdentifiedObject(const Value *V);
/// isIdentifiedFunctionLocal - Return true if V is umabigously identified
/// at the function-level. Different IdentifiedFunctionLocals can't alias.
/// Further, an IdentifiedFunctionLocal can not alias with any function
/// arguments other than itself, which is not necessarily true for
/// IdentifiedObjects.
bool isIdentifiedFunctionLocal(const Value *V);
} // End llvm namespace
#endif