llvm-6502/lib/Transforms/Utils/BasicBlockUtils.cpp

189 lines
6.9 KiB
C++
Raw Normal View History

//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform manipulations on basic blocks, and
// instructions contained within basic blocks.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Constant.h"
#include "llvm/Type.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Dominators.h"
#include <algorithm>
using namespace llvm;
/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
/// with a value, then remove and delete the original instruction.
///
void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
BasicBlock::iterator &BI, Value *V) {
Instruction &I = *BI;
// Replaces all of the uses of the instruction with uses of the value
I.replaceAllUsesWith(V);
// Make sure to propagate a name if there is one already.
if (I.hasName() && !V->hasName())
V->takeName(&I);
// Delete the unnecessary instruction now...
BI = BIL.erase(BI);
}
/// ReplaceInstWithInst - Replace the instruction specified by BI with the
/// instruction specified by I. The original instruction is deleted and BI is
/// updated to point to the new instruction.
///
void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
BasicBlock::iterator &BI, Instruction *I) {
assert(I->getParent() == 0 &&
"ReplaceInstWithInst: Instruction already inserted into basic block!");
// Insert the new instruction into the basic block...
BasicBlock::iterator New = BIL.insert(BI, I);
// Replace all uses of the old instruction, and delete it.
ReplaceInstWithValue(BIL, BI, I);
// Move BI back to point to the newly inserted instruction
BI = New;
}
/// ReplaceInstWithInst - Replace the instruction specified by From with the
/// instruction specified by To.
///
void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
BasicBlock::iterator BI(From);
ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
}
/// RemoveSuccessor - Change the specified terminator instruction such that its
/// successor SuccNum no longer exists. Because this reduces the outgoing
/// degree of the current basic block, the actual terminator instruction itself
/// may have to be changed. In the case where the last successor of the block
/// is deleted, a return instruction is inserted in its place which can cause a
/// surprising change in program behavior if it is not expected.
///
void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
assert(SuccNum < TI->getNumSuccessors() &&
"Trying to remove a nonexistant successor!");
// If our old successor block contains any PHI nodes, remove the entry in the
// PHI nodes that comes from this branch...
//
BasicBlock *BB = TI->getParent();
TI->getSuccessor(SuccNum)->removePredecessor(BB);
TerminatorInst *NewTI = 0;
switch (TI->getOpcode()) {
case Instruction::Br:
// If this is a conditional branch... convert to unconditional branch.
if (TI->getNumSuccessors() == 2) {
cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum));
} else { // Otherwise convert to a return instruction...
Value *RetVal = 0;
// Create a value to return... if the function doesn't return null...
if (BB->getParent()->getReturnType() != Type::VoidTy)
RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
// Create the return...
NewTI = new ReturnInst(RetVal);
}
break;
case Instruction::Invoke: // Should convert to call
case Instruction::Switch: // Should remove entry
default:
case Instruction::Ret: // Cannot happen, has no successors!
assert(0 && "Unhandled terminator instruction type in RemoveSuccessor!");
abort();
}
if (NewTI) // If it's a different instruction, replace.
ReplaceInstWithInst(TI, NewTI);
}
/// SplitEdge - Split the edge connecting specified block. Pass P must
/// not be NULL.
BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
TerminatorInst *LatchTerm = BB->getTerminator();
unsigned SuccNum = 0;
for (unsigned i = 0, e = LatchTerm->getNumSuccessors(); ; ++i) {
assert(i != e && "Didn't find edge?");
if (LatchTerm->getSuccessor(i) == Succ) {
SuccNum = i;
break;
}
}
// If this is a critical edge, let SplitCriticalEdge do it.
if (SplitCriticalEdge(BB->getTerminator(), SuccNum, P))
return LatchTerm->getSuccessor(SuccNum);
// If the edge isn't critical, then BB has a single successor or Succ has a
// single pred. Split the block.
BasicBlock::iterator SplitPoint;
if (BasicBlock *SP = Succ->getSinglePredecessor()) {
// If the successor only has a single pred, split the top of the successor
// block.
assert(SP == BB && "CFG broken");
return SplitBlock(Succ, Succ->begin(), P);
} else {
// Otherwise, if BB has a single successor, split it at the bottom of the
// block.
assert(BB->getTerminator()->getNumSuccessors() == 1 &&
"Should have a single succ!");
return SplitBlock(BB, BB->getTerminator(), P);
}
}
/// SplitBlock - Split the specified block at the specified instruction - every
/// thing before SplitPt stays in Old and everything starting with SplitPt moves
/// to a new block. The two blocks are joined by an unconditional branch and
/// the loop info is updated.
///
BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
LoopInfo &LI = P->getAnalysis<LoopInfo>();
BasicBlock::iterator SplitIt = SplitPt;
while (isa<PHINode>(SplitIt))
++SplitIt;
BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
// The new block lives in whichever loop the old one did.
if (Loop *L = LI.getLoopFor(Old))
L->addBasicBlockToLoop(New, LI.getBase());
if (DominatorTree *DT = P->getAnalysisToUpdate<DominatorTree>())
{
// Old dominates New. New node domiantes all other nodes dominated by Old.
DomTreeNode *OldNode = DT->getNode(Old);
std::vector<DomTreeNode *> Children;
for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
I != E; ++I)
Children.push_back(*I);
DomTreeNode *NewNode = DT->addNewBlock(New,Old);
for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
E = Children.end(); I != E; ++I)
DT->changeImmediateDominator(*I, NewNode);
}
if (DominanceFrontier *DF = P->getAnalysisToUpdate<DominanceFrontier>())
DF->splitBlock(Old);
return New;
}