llvm-6502/lib/Transforms/IPO/OldPoolAllocate.cpp

512 lines
19 KiB
C++
Raw Normal View History

//===-- PoolAllocate.cpp - Pool Allocation Pass ---------------------------===//
//
// This transform changes programs so that disjoint data structures are
// allocated out of different pools of memory, increasing locality and shrinking
// pointer size.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/PoolAllocate.h"
#include "llvm/Transforms/CloneFunction.h"
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Pass.h"
#include "llvm/Module.h"
#include "llvm/Function.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/ConstantVals.h"
#include "llvm/Target/TargetData.h"
#include "Support/STLExtras.h"
#include <algorithm>
// FIXME: This is dependant on the sparc backend layout conventions!!
static TargetData TargetData("test");
namespace {
// ScalarInfo - Information about an LLVM value that we know points to some
// datastructure we are processing.
//
struct ScalarInfo {
Value *Val; // Scalar value in Current Function
AllocDSNode *AllocNode; // Allocation node it points to
Value *PoolHandle; // PoolTy* LLVM value
ScalarInfo(Value *V, AllocDSNode *AN, Value *PH)
: Val(V), AllocNode(AN), PoolHandle(PH) {}
};
// TransformFunctionInfo - Information about how a function eeds to be
// transformed.
//
struct TransformFunctionInfo {
// ArgInfo - Maintain information about the arguments that need to be
// processed. Each pair corresponds to an argument (whose number is the
// first element) that needs to have a pool pointer (the second element)
// passed into the transformed function with it.
//
// As a special case, "argument" number -1 corresponds to the return value.
//
vector<pair<int, Value*> > ArgInfo;
// Func - The function to be transformed...
Function *Func;
// default ctor...
TransformFunctionInfo() : Func(0) {}
inline bool operator<(const TransformFunctionInfo &TFI) const {
if (Func < TFI.Func) return true;
if (Func > TFI.Func) return false;
// Loop over the arguments, checking to see if only the arg _numbers_ are
// less...
if (ArgInfo.size() < TFI.ArgInfo.size()) return true;
if (ArgInfo.size() > TFI.ArgInfo.size()) return false;
for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
if (ArgInfo[i].first < TFI.ArgInfo[i].first) return true;
if (ArgInfo[i].first > TFI.ArgInfo[i].first) return false;
}
return false; // They must be equal
}
void finalizeConstruction() {
// Sort the vector so that the return value is first, followed by the
// argument records, in order.
sort(ArgInfo.begin(), ArgInfo.end());
}
};
// Define the pass class that we implement...
class PoolAllocate : public Pass {
// PoolTy - The type of a scalar value that contains a pool pointer.
PointerType *PoolTy;
public:
PoolAllocate() {
// Initialize the PoolTy instance variable, since the type never changes.
vector<const Type*> PoolElements;
PoolElements.push_back(PointerType::get(Type::SByteTy));
PoolElements.push_back(Type::UIntTy);
PoolTy = PointerType::get(StructType::get(PoolElements));
// PoolTy = { sbyte*, uint }*
CurModule = 0; DS = 0;
PoolInit = PoolDestroy = PoolAlloc = PoolFree = 0;
}
bool run(Module *M);
// getAnalysisUsageInfo - This function requires data structure information
// to be able to see what is pool allocatable.
//
virtual void getAnalysisUsageInfo(Pass::AnalysisSet &Required,
Pass::AnalysisSet &,Pass::AnalysisSet &) {
Required.push_back(DataStructure::ID);
}
private:
// CurModule - The module being processed.
Module *CurModule;
// DS - The data structure graph for the module being processed.
DataStructure *DS;
// Prototypes that we add to support pool allocation...
Function *PoolInit, *PoolDestroy, *PoolAlloc, *PoolFree;
// The map of already transformed functions...
map<TransformFunctionInfo, Function*> TransformedFunctions;
// getTransformedFunction - Get a transformed function, or return null if
// the function specified hasn't been transformed yet.
//
Function *getTransformedFunction(TransformFunctionInfo &TFI) const {
map<TransformFunctionInfo, Function*>::const_iterator I =
TransformedFunctions.find(TFI);
if (I != TransformedFunctions.end()) return I->second;
return 0;
}
// addPoolPrototypes - Add prototypes for the pool methods to the specified
// module and update the Pool* instance variables to point to them.
//
void addPoolPrototypes(Module *M);
// CreatePools - Insert instructions into the function we are processing to
// create all of the memory pool objects themselves. This also inserts
// destruction code. Add an alloca for each pool that is allocated to the
// PoolDescriptors vector.
//
void CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
vector<AllocaInst*> &PoolDescriptors);
// processFunction - Convert a function to use pool allocation where
// available.
//
bool processFunction(Function *F);
void transformFunctionBody(Function *F, vector<ScalarInfo> &Scalars);
// transformFunction - Transform the specified function the specified way.
// It we have already transformed that function that way, don't do anything.
//
void transformFunction(TransformFunctionInfo &TFI);
};
}
// isNotPoolableAlloc - This is a predicate that returns true if the specified
// allocation node in a data structure graph is eligable for pool allocation.
//
static bool isNotPoolableAlloc(const AllocDSNode *DS) {
if (DS->isAllocaNode()) return true; // Do not pool allocate alloca's.
MallocInst *MI = cast<MallocInst>(DS->getAllocation());
if (MI->isArrayAllocation() && !isa<Constant>(MI->getArraySize()))
return true; // Do not allow variable size allocations...
return false;
}
// processFunction - Convert a function to use pool allocation where
// available.
//
bool PoolAllocate::processFunction(Function *F) {
// Get the closed datastructure graph for the current function... if there are
// any allocations in this graph that are not escaping, we need to pool
// allocate them here!
//
FunctionDSGraph &IPGraph = DS->getClosedDSGraph(F);
// Get all of the allocations that do not escape the current function. Since
// they are still live (they exist in the graph at all), this means we must
// have scalar references to these nodes, but the scalars are never returned.
//
vector<AllocDSNode*> Allocs;
IPGraph.getNonEscapingAllocations(Allocs);
// Filter out allocations that we cannot handle. Currently, this includes
// variable sized array allocations and alloca's (which we do not want to
// pool allocate)
//
Allocs.erase(remove_if(Allocs.begin(), Allocs.end(), isNotPoolableAlloc),
Allocs.end());
if (Allocs.empty()) return false; // Nothing to do.
// Insert instructions into the function we are processing to create all of
// the memory pool objects themselves. This also inserts destruction code.
// This fills in the PoolDescriptors vector to be a array parallel with
// Allocs, but containing the alloca instructions that allocate the pool ptr.
//
vector<AllocaInst*> PoolDescriptors;
CreatePools(F, Allocs, PoolDescriptors);
// Loop through the value map looking for scalars that refer to nonescaping
// allocations. Add them to the Scalars vector. Note that we may have
// multiple entries in the Scalars vector for each value if it points to more
// than one object.
//
map<Value*, PointerValSet> &ValMap = IPGraph.getValueMap();
vector<ScalarInfo> Scalars;
for (map<Value*, PointerValSet>::iterator I = ValMap.begin(),
E = ValMap.end(); I != E; ++I) {
const PointerValSet &PVS = I->second; // Set of things pointed to by scalar
assert(PVS.size() == 1 &&
"Only handle scalars that point to one thing so far!");
// Check to see if the scalar points to anything that is an allocation...
for (unsigned i = 0, e = PVS.size(); i != e; ++i)
if (AllocDSNode *Alloc = dyn_cast<AllocDSNode>(PVS[i].Node)) {
assert(PVS[i].Index == 0 && "Nonzero not handled yet!");
// If the allocation is in the nonescaping set...
vector<AllocDSNode*>::iterator AI =
find(Allocs.begin(), Allocs.end(), Alloc);
if (AI != Allocs.end()) {
unsigned IDX = AI-Allocs.begin();
// Add it to the list of scalars we have
Scalars.push_back(ScalarInfo(I->first, Alloc, PoolDescriptors[IDX]));
}
}
}
// Now we need to figure out what called methods we need to transform, and
// how. To do this, we look at all of the scalars, seeing which functions are
// either used as a scalar value (so they return a data structure), or are
// passed one of our scalar values.
//
transformFunctionBody(F, Scalars);
return true;
}
static void addCallInfo(TransformFunctionInfo &TFI, CallInst *CI, int Arg,
Value *PoolHandle) {
assert(CI->getCalledFunction() && "Cannot handle indirect calls yet!");
TFI.ArgInfo.push_back(make_pair(Arg, PoolHandle));
assert(TFI.Func == 0 || TFI.Func == CI->getCalledFunction() &&
"Function call record should always call the same function!");
TFI.Func = CI->getCalledFunction();
}
void PoolAllocate::transformFunctionBody(Function *F,
vector<ScalarInfo> &Scalars) {
cerr << "In '" << F->getName()
<< "': Found the following values that point to poolable nodes:\n";
for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
Scalars[i].Val->dump();
// CallMap - Contain an entry for every call instruction that needs to be
// transformed. Each entry in the map contains information about what we need
// to do to each call site to change it to work.
//
map<CallInst*, TransformFunctionInfo> CallMap;
// Now we need to figure out what called methods we need to transform, and
// how. To do this, we look at all of the scalars, seeing which functions are
// either used as a scalar value (so they return a data structure), or are
// passed one of our scalar values.
//
for (unsigned i = 0, e = Scalars.size(); i != e; ++i) {
Value *ScalarVal = Scalars[i].Val;
// Check to see if the scalar _IS_ a call...
if (CallInst *CI = dyn_cast<CallInst>(ScalarVal))
// If so, add information about the pool it will be returning...
addCallInfo(CallMap[CI], CI, -1, Scalars[i].PoolHandle);
// Check to see if the scalar is an operand to a call...
for (Value::use_iterator UI = ScalarVal->use_begin(),
UE = ScalarVal->use_end(); UI != UE; ++UI) {
if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
// Find out which operand this is to the call instruction...
User::op_iterator OI = find(CI->op_begin(), CI->op_end(), ScalarVal);
assert(OI != CI->op_end() && "Call on use list but not an operand!?");
assert(OI != CI->op_begin() && "Pointer operand is call destination?");
// FIXME: This is broken if the same pointer is passed to a call more
// than once! It will get multiple entries for the first pointer.
// Add the operand number and pool handle to the call table...
addCallInfo(CallMap[CI], CI, OI-CI->op_begin()-1,Scalars[i].PoolHandle);
}
}
}
// Print out call map...
for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin();
I != CallMap.end(); ++I) {
cerr << "\nFor call: ";
I->first->dump();
I->second.finalizeConstruction();
cerr << I->second.Func->getName() << " must pass pool pointer for arg #";
for (unsigned i = 0; i < I->second.ArgInfo.size(); ++i)
cerr << I->second.ArgInfo[i].first << " ";
cerr << "\n";
}
// Loop through all of the call nodes, recursively creating the new functions
// that we want to call... This uses a map to prevent infinite recursion and
// to avoid duplicating functions unneccesarily.
//
for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin(),
E = CallMap.end(); I != E; ++I) {
// Make sure the entries are sorted.
I->second.finalizeConstruction();
transformFunction(I->second);
}
}
// transformFunction - Transform the specified function the specified way.
// It we have already transformed that function that way, don't do anything.
//
void PoolAllocate::transformFunction(TransformFunctionInfo &TFI) {
if (getTransformedFunction(TFI)) return; // Function xformation already done?
Function *FuncToXForm = TFI.Func;
const FunctionType *OldFuncType = FuncToXForm->getFunctionType();
assert(!OldFuncType->isVarArg() && "Vararg functions not handled yet!");
// Build the type for the new function that we are transforming
vector<const Type*> ArgTys;
for (unsigned i = 0, e = OldFuncType->getNumParams(); i != e; ++i)
ArgTys.push_back(OldFuncType->getParamType(i));
// Add one pool pointer for every argument that needs to be supplemented.
ArgTys.insert(ArgTys.end(), TFI.ArgInfo.size(), PoolTy);
// Build the new function type...
const // FIXME when types are not const
FunctionType *NewFuncType = FunctionType::get(OldFuncType->getReturnType(),
ArgTys,OldFuncType->isVarArg());
// The new function is internal, because we know that only we can call it.
// This also helps subsequent IP transformations to eliminate duplicated pool
// pointers. [in the future when they are implemented].
//
Function *NewFunc = new Function(NewFuncType, true,
FuncToXForm->getName()+".poolxform");
CurModule->getFunctionList().push_back(NewFunc);
// Add the newly formed function to the TransformedFunctions table so that
// infinite recursion does not occur!
//
TransformedFunctions[TFI] = NewFunc;
// Add arguments to the function... starting with all of the old arguments
vector<Value*> ArgMap;
for (unsigned i = 0, e = FuncToXForm->getArgumentList().size(); i != e; ++i) {
const FunctionArgument *OFA = FuncToXForm->getArgumentList()[i];
FunctionArgument *NFA = new FunctionArgument(OFA->getType(),OFA->getName());
NewFunc->getArgumentList().push_back(NFA);
ArgMap.push_back(NFA); // Keep track of the arguments
}
// Now add all of the arguments corresponding to pools passed in...
for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
string Name;
if (TFI.ArgInfo[i].first == -1)
Name = "retpool";
else
Name = ArgMap[TFI.ArgInfo[i].first]->getName(); // Get the arg name
FunctionArgument *NFA = new FunctionArgument(PoolTy, Name+".pool");
NewFunc->getArgumentList().push_back(NFA);
}
// Now clone the body of the old function into the new function...
CloneFunctionInto(NewFunc, FuncToXForm, ArgMap);
}
// CreatePools - Insert instructions into the function we are processing to
// create all of the memory pool objects themselves. This also inserts
// destruction code. Add an alloca for each pool that is allocated to the
// PoolDescriptors vector.
//
void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
vector<AllocaInst*> &PoolDescriptors) {
// FIXME: This should use an IP version of the UnifyAllExits pass!
vector<BasicBlock*> ReturnNodes;
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
if (isa<ReturnInst>((*I)->getTerminator()))
ReturnNodes.push_back(*I);
// Create the code that goes in the entry and exit nodes for the method...
vector<Instruction*> EntryNodeInsts;
for (unsigned i = 0, e = Allocs.size(); i != e; ++i) {
// Add an allocation and a free for each pool...
AllocaInst *PoolAlloc = new AllocaInst(PoolTy, 0, "pool");
EntryNodeInsts.push_back(PoolAlloc);
PoolDescriptors.push_back(PoolAlloc); // Keep track of pool allocas
AllocationInst *AI = Allocs[i]->getAllocation();
// Initialize the pool. We need to know how big each allocation is. For
// our purposes here, we assume we are allocating a scalar, or array of
// constant size.
//
unsigned ElSize = TargetData.getTypeSize(AI->getAllocatedType());
ElSize *= cast<ConstantUInt>(AI->getArraySize())->getValue();
vector<Value*> Args;
Args.push_back(PoolAlloc); // Pool to initialize
Args.push_back(ConstantUInt::get(Type::UIntTy, ElSize));
EntryNodeInsts.push_back(new CallInst(PoolInit, Args));
// Destroy the pool...
Args.pop_back();
for (unsigned EN = 0, ENE = ReturnNodes.size(); EN != ENE; ++EN) {
Instruction *Destroy = new CallInst(PoolDestroy, Args);
// Insert it before the return instruction...
BasicBlock *RetNode = ReturnNodes[EN];
RetNode->getInstList().insert(RetNode->end()-1, Destroy);
}
}
// Insert the entry node code into the entry block...
F->getEntryNode()->getInstList().insert(F->getEntryNode()->begin()+1,
EntryNodeInsts.begin(),
EntryNodeInsts.end());
}
// addPoolPrototypes - Add prototypes for the pool methods to the specified
// module and update the Pool* instance variables to point to them.
//
void PoolAllocate::addPoolPrototypes(Module *M) {
// Get PoolInit function...
vector<const Type*> Args;
Args.push_back(PoolTy); // Pool to initialize
Args.push_back(Type::UIntTy); // Num bytes per element
FunctionType *PoolInitTy = FunctionType::get(Type::VoidTy, Args, false);
PoolInit = M->getOrInsertFunction("poolinit", PoolInitTy);
// Get pooldestroy function...
Args.pop_back(); // Only takes a pool...
FunctionType *PoolDestroyTy = FunctionType::get(Type::VoidTy, Args, false);
PoolDestroy = M->getOrInsertFunction("pooldestroy", PoolDestroyTy);
const Type *PtrVoid = PointerType::get(Type::SByteTy);
// Get the poolalloc function...
FunctionType *PoolAllocTy = FunctionType::get(PtrVoid, Args, false);
PoolAlloc = M->getOrInsertFunction("poolalloc", PoolAllocTy);
// Get the poolfree function...
Args.push_back(PtrVoid);
FunctionType *PoolFreeTy = FunctionType::get(Type::VoidTy, Args, false);
PoolFree = M->getOrInsertFunction("poolfree", PoolFreeTy);
// Add the %PoolTy type to the symbol table of the module...
M->addTypeName("PoolTy", PoolTy->getElementType());
}
bool PoolAllocate::run(Module *M) {
addPoolPrototypes(M);
CurModule = M;
DS = &getAnalysis<DataStructure>();
bool Changed = false;
// We cannot use an iterator here because it will get invalidated when we add
// functions to the module later...
for (unsigned i = 0; i != M->size(); ++i)
if (!M->getFunctionList()[i]->isExternal())
Changed |= processFunction(M->getFunctionList()[i]);
CurModule = 0;
DS = 0;
return false;
}
// createPoolAllocatePass - Global function to access the functionality of this
// pass...
//
Pass *createPoolAllocatePass() { return new PoolAllocate(); }