llvm-6502/lib/Analysis/TypeBasedAliasAnalysis.cpp

531 lines
18 KiB
C++
Raw Normal View History

//===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the TypeBasedAliasAnalysis pass, which implements
// metadata-based TBAA.
//
// In LLVM IR, memory does not have types, so LLVM's own type system is not
// suitable for doing TBAA. Instead, metadata is added to the IR to describe
// a type system of a higher level language. This can be used to implement
// typical C/C++ TBAA, but it can also be used to implement custom alias
// analysis behavior for other languages.
//
// The current metadata format is very simple. TBAA MDNodes have up to
// three fields, e.g.:
// !0 = metadata !{ metadata !"an example type tree" }
// !1 = metadata !{ metadata !"int", metadata !0 }
// !2 = metadata !{ metadata !"float", metadata !0 }
// !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
//
// The first field is an identity field. It can be any value, usually
// an MDString, which uniquely identifies the type. The most important
// name in the tree is the name of the root node. Two trees with
// different root node names are entirely disjoint, even if they
// have leaves with common names.
//
// The second field identifies the type's parent node in the tree, or
// is null or omitted for a root node. A type is considered to alias
// all of its descendants and all of its ancestors in the tree. Also,
// a type is considered to alias all types in other trees, so that
// bitcode produced from multiple front-ends is handled conservatively.
//
// If the third field is present, it's an integer which if equal to 1
// indicates that the type is "constant" (meaning pointsToConstantMemory
// should return true; see
// http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
//
// TODO: The current metadata format doesn't support struct
// fields. For example:
// struct X {
// double d;
// int i;
// };
// void foo(struct X *x, struct X *y, double *p) {
// *x = *y;
// *p = 0.0;
// }
// Struct X has a double member, so the store to *x can alias the store to *p.
// Currently it's not possible to precisely describe all the things struct X
// aliases, so struct assignments must use conservative TBAA nodes. There's
// no scheme for attaching metadata to @llvm.memcpy yet either.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
// A handy option for disabling TBAA functionality. The same effect can also be
// achieved by stripping the !tbaa tags from IR, but this option is sometimes
// more convenient.
static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
static cl::opt<bool> EnableStructPathTBAA("struct-path-tbaa", cl::init(false));
namespace {
/// TBAANode - This is a simple wrapper around an MDNode which provides a
/// higher-level interface by hiding the details of how alias analysis
/// information is encoded in its operands.
class TBAANode {
const MDNode *Node;
public:
TBAANode() : Node(0) {}
explicit TBAANode(const MDNode *N) : Node(N) {}
/// getNode - Get the MDNode for this TBAANode.
const MDNode *getNode() const { return Node; }
/// getParent - Get this TBAANode's Alias tree parent.
TBAANode getParent() const {
if (Node->getNumOperands() < 2)
return TBAANode();
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
if (!P)
return TBAANode();
// Ok, this node has a valid parent. Return it.
return TBAANode(P);
}
/// TypeIsImmutable - Test if this TBAANode represents a type for objects
/// which are not modified (by any means) in the context where this
/// AliasAnalysis is relevant.
bool TypeIsImmutable() const {
if (Node->getNumOperands() < 3)
return false;
ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(2));
if (!CI)
return false;
return CI->getValue()[0];
}
};
/// This is a simple wrapper around an MDNode which provides a
/// higher-level interface by hiding the details of how alias analysis
/// information is encoded in its operands.
class TBAAStructTagNode {
/// This node should be created with createTBAAStructTagNode.
const MDNode *Node;
public:
TBAAStructTagNode() : Node(0) {}
explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
/// Get the MDNode for this TBAAStructTagNode.
const MDNode *getNode() const { return Node; }
const MDNode *getBaseType() const {
return dyn_cast_or_null<MDNode>(Node->getOperand(0));
}
const MDNode *getAccessType() const {
return dyn_cast_or_null<MDNode>(Node->getOperand(1));
}
uint64_t getOffset() const {
return cast<ConstantInt>(Node->getOperand(2))->getZExtValue();
}
/// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
/// objects which are not modified (by any means) in the context where this
/// AliasAnalysis is relevant.
bool TypeIsImmutable() const {
if (Node->getNumOperands() < 4)
return false;
ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(3));
if (!CI)
return false;
return CI->getValue()[0];
}
};
/// This is a simple wrapper around an MDNode which provides a
/// higher-level interface by hiding the details of how alias analysis
/// information is encoded in its operands.
class TBAAStructTypeNode {
/// This node should be created with createTBAAStructTypeNode.
const MDNode *Node;
public:
TBAAStructTypeNode() : Node(0) {}
explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
/// Get the MDNode for this TBAAStructTypeNode.
const MDNode *getNode() const { return Node; }
/// Get this TBAAStructTypeNode's field in the type DAG with
/// given offset. Update the offset to be relative to the field type.
TBAAStructTypeNode getParent(uint64_t &Offset) const {
// Parent can be omitted for the root node.
if (Node->getNumOperands() < 2)
return TBAAStructTypeNode();
// Special handling for a scalar type node.
if (Node->getNumOperands() <= 3) {
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
if (!P)
return TBAAStructTypeNode();
return TBAAStructTypeNode(P);
}
// Assume the offsets are in order. We return the previous field if
// the current offset is bigger than the given offset.
unsigned TheIdx = 0;
for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
uint64_t Cur = cast<ConstantInt>(Node->getOperand(Idx + 1))->
getZExtValue();
if (Cur > Offset) {
assert(Idx >= 3 &&
"TBAAStructTypeNode::getParent should have an offset match!");
TheIdx = Idx - 2;
break;
}
}
// Move along the last field.
if (TheIdx == 0)
TheIdx = Node->getNumOperands() - 2;
uint64_t Cur = cast<ConstantInt>(Node->getOperand(TheIdx + 1))->
getZExtValue();
Offset -= Cur;
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
if (!P)
return TBAAStructTypeNode();
return TBAAStructTypeNode(P);
}
};
}
namespace {
/// TypeBasedAliasAnalysis - This is a simple alias analysis
/// implementation that uses TypeBased to answer queries.
class TypeBasedAliasAnalysis : public ImmutablePass,
public AliasAnalysis {
public:
static char ID; // Class identification, replacement for typeinfo
TypeBasedAliasAnalysis() : ImmutablePass(ID) {
initializeTypeBasedAliasAnalysisPass(*PassRegistry::getPassRegistry());
}
virtual void initializePass() {
InitializeAliasAnalysis(this);
}
/// getAdjustedAnalysisPointer - This method is used when a pass implements
/// an analysis interface through multiple inheritance. If needed, it
/// should override this to adjust the this pointer as needed for the
/// specified pass info.
virtual void *getAdjustedAnalysisPointer(const void *PI) {
if (PI == &AliasAnalysis::ID)
return (AliasAnalysis*)this;
return this;
}
bool Aliases(const MDNode *A, const MDNode *B) const;
bool PathAliases(const MDNode *A, const MDNode *B) const;
private:
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual AliasResult alias(const Location &LocA, const Location &LocB);
virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
virtual ModRefBehavior getModRefBehavior(const Function *F);
virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
const Location &Loc);
virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2);
};
} // End of anonymous namespace
// Register this pass...
char TypeBasedAliasAnalysis::ID = 0;
INITIALIZE_AG_PASS(TypeBasedAliasAnalysis, AliasAnalysis, "tbaa",
"Type-Based Alias Analysis", false, true, false)
ImmutablePass *llvm::createTypeBasedAliasAnalysisPass() {
return new TypeBasedAliasAnalysis();
}
void
TypeBasedAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AliasAnalysis::getAnalysisUsage(AU);
}
/// Aliases - Test whether the type represented by A may alias the
/// type represented by B.
bool
TypeBasedAliasAnalysis::Aliases(const MDNode *A,
const MDNode *B) const {
if (EnableStructPathTBAA)
return PathAliases(A, B);
// Keep track of the root node for A and B.
TBAANode RootA, RootB;
// Climb the tree from A to see if we reach B.
for (TBAANode T(A); ; ) {
if (T.getNode() == B)
// B is an ancestor of A.
return true;
RootA = T;
T = T.getParent();
if (!T.getNode())
break;
}
// Climb the tree from B to see if we reach A.
for (TBAANode T(B); ; ) {
if (T.getNode() == A)
// A is an ancestor of B.
return true;
RootB = T;
T = T.getParent();
if (!T.getNode())
break;
}
// Neither node is an ancestor of the other.
// If they have different roots, they're part of different potentially
// unrelated type systems, so we must be conservative.
if (RootA.getNode() != RootB.getNode())
return true;
// If they have the same root, then we've proved there's no alias.
return false;
}
/// Test whether the struct-path tag represented by A may alias the
/// struct-path tag represented by B.
bool
TypeBasedAliasAnalysis::PathAliases(const MDNode *A,
const MDNode *B) const {
// Keep track of the root node for A and B.
TBAAStructTypeNode RootA, RootB;
TBAAStructTagNode TagA(A), TagB(B);
// TODO: We need to check if AccessType of TagA encloses AccessType of
// TagB to support aggregate AccessType. If yes, return true.
// Start from the base type of A, follow the edge with the correct offset in
// the type DAG and adjust the offset until we reach the base type of B or
// until we reach the Root node.
// Compare the adjusted offset once we have the same base.
// Climb the type DAG from base type of A to see if we reach base type of B.
const MDNode *BaseA = TagA.getBaseType();
const MDNode *BaseB = TagB.getBaseType();
uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
for (TBAAStructTypeNode T(BaseA); ; ) {
if (T.getNode() == BaseB)
// Base type of A encloses base type of B, check if the offsets match.
return OffsetA == OffsetB;
RootA = T;
// Follow the edge with the correct offset, OffsetA will be adjusted to
// be relative to the field type.
T = T.getParent(OffsetA);
if (!T.getNode())
break;
}
// Reset OffsetA and climb the type DAG from base type of B to see if we reach
// base type of A.
OffsetA = TagA.getOffset();
for (TBAAStructTypeNode T(BaseB); ; ) {
if (T.getNode() == BaseA)
// Base type of B encloses base type of A, check if the offsets match.
return OffsetA == OffsetB;
RootB = T;
// Follow the edge with the correct offset, OffsetB will be adjusted to
// be relative to the field type.
T = T.getParent(OffsetB);
if (!T.getNode())
break;
}
// Neither node is an ancestor of the other.
// If they have different roots, they're part of different potentially
// unrelated type systems, so we must be conservative.
if (RootA.getNode() != RootB.getNode())
return true;
// If they have the same root, then we've proved there's no alias.
return false;
}
AliasAnalysis::AliasResult
TypeBasedAliasAnalysis::alias(const Location &LocA,
const Location &LocB) {
if (!EnableTBAA)
return AliasAnalysis::alias(LocA, LocB);
// Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
// be conservative.
const MDNode *AM = LocA.TBAATag;
if (!AM) return AliasAnalysis::alias(LocA, LocB);
const MDNode *BM = LocB.TBAATag;
if (!BM) return AliasAnalysis::alias(LocA, LocB);
// If they may alias, chain to the next AliasAnalysis.
if (Aliases(AM, BM))
return AliasAnalysis::alias(LocA, LocB);
// Otherwise return a definitive result.
return NoAlias;
}
bool TypeBasedAliasAnalysis::pointsToConstantMemory(const Location &Loc,
bool OrLocal) {
if (!EnableTBAA)
return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
const MDNode *M = Loc.TBAATag;
if (!M) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
// If this is an "immutable" type, we can assume the pointer is pointing
// to constant memory.
if ((!EnableStructPathTBAA && TBAANode(M).TypeIsImmutable()) ||
(EnableStructPathTBAA && TBAAStructTagNode(M).TypeIsImmutable()))
return true;
return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
}
AliasAnalysis::ModRefBehavior
TypeBasedAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
if (!EnableTBAA)
return AliasAnalysis::getModRefBehavior(CS);
ModRefBehavior Min = UnknownModRefBehavior;
// If this is an "immutable" type, we can assume the call doesn't write
// to memory.
if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if ((!EnableStructPathTBAA && TBAANode(M).TypeIsImmutable()) ||
(EnableStructPathTBAA && TBAAStructTagNode(M).TypeIsImmutable()))
Min = OnlyReadsMemory;
return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
}
AliasAnalysis::ModRefBehavior
TypeBasedAliasAnalysis::getModRefBehavior(const Function *F) {
// Functions don't have metadata. Just chain to the next implementation.
return AliasAnalysis::getModRefBehavior(F);
}
AliasAnalysis::ModRefResult
TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
const Location &Loc) {
if (!EnableTBAA)
return AliasAnalysis::getModRefInfo(CS, Loc);
if (const MDNode *L = Loc.TBAATag)
if (const MDNode *M =
CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if (!Aliases(L, M))
return NoModRef;
return AliasAnalysis::getModRefInfo(CS, Loc);
}
AliasAnalysis::ModRefResult
TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) {
if (!EnableTBAA)
return AliasAnalysis::getModRefInfo(CS1, CS2);
if (const MDNode *M1 =
CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if (const MDNode *M2 =
CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if (!Aliases(M1, M2))
return NoModRef;
return AliasAnalysis::getModRefInfo(CS1, CS2);
}
bool MDNode::isTBAAVtableAccess() const {
if (!EnableStructPathTBAA) {
if (getNumOperands() < 1) return false;
if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
if (Tag1->getString() == "vtable pointer") return true;
}
return false;
}
// For struct-path aware TBAA, we use the access type of the tag.
if (getNumOperands() < 2) return false;
MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
if (!Tag) return false;
if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
if (Tag1->getString() == "vtable pointer") return true;
}
return false;
}
MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
if (!A || !B)
return NULL;
if (A == B)
return A;
// For struct-path aware TBAA, we use the access type of the tag.
if (EnableStructPathTBAA) {
A = cast_or_null<MDNode>(A->getOperand(1));
if (!A) return 0;
B = cast_or_null<MDNode>(B->getOperand(1));
if (!B) return 0;
}
SmallVector<MDNode *, 4> PathA;
MDNode *T = A;
while (T) {
PathA.push_back(T);
T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) : 0;
}
SmallVector<MDNode *, 4> PathB;
T = B;
while (T) {
PathB.push_back(T);
T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) : 0;
}
int IA = PathA.size() - 1;
int IB = PathB.size() - 1;
MDNode *Ret = 0;
while (IA >= 0 && IB >=0) {
if (PathA[IA] == PathB[IB])
Ret = PathA[IA];
else
break;
--IA;
--IB;
}
if (!EnableStructPathTBAA)
return Ret;
if (!Ret)
return 0;
// We need to convert from a type node to a tag node.
Type *Int64 = IntegerType::get(A->getContext(), 64);
Value *Ops[3] = { Ret, Ret, ConstantInt::get(Int64, 0) };
return MDNode::get(A->getContext(), Ops);
}