llvm-6502/include/llvm/Module.h

561 lines
24 KiB
C
Raw Normal View History

//===-- llvm/Module.h - C++ class to represent a VM module ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// @file
/// Module.h This file contains the declarations for the Module class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_MODULE_H
#define LLVM_MODULE_H
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/GlobalAlias.h"
#include "llvm/Metadata.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/System/DataTypes.h"
#include <vector>
namespace llvm {
class FunctionType;
class GVMaterializer;
class LLVMContext;
class MDSymbolTable;
template<> struct ilist_traits<Function>
: public SymbolTableListTraits<Function, Module> {
// createSentinel is used to get hold of the node that marks the end of the
// list... (same trick used here as in ilist_traits<Instruction>)
Function *createSentinel() const {
return static_cast<Function*>(&Sentinel);
}
static void destroySentinel(Function*) {}
Function *provideInitialHead() const { return createSentinel(); }
Function *ensureHead(Function*) const { return createSentinel(); }
static void noteHead(Function*, Function*) {}
private:
mutable ilist_node<Function> Sentinel;
};
template<> struct ilist_traits<GlobalVariable>
: public SymbolTableListTraits<GlobalVariable, Module> {
// createSentinel is used to create a node that marks the end of the list.
static GlobalVariable *createSentinel();
static void destroySentinel(GlobalVariable *GV) { delete GV; }
};
template<> struct ilist_traits<GlobalAlias>
: public SymbolTableListTraits<GlobalAlias, Module> {
// createSentinel is used to create a node that marks the end of the list.
static GlobalAlias *createSentinel();
static void destroySentinel(GlobalAlias *GA) { delete GA; }
};
template<> struct ilist_traits<NamedMDNode>
: public SymbolTableListTraits<NamedMDNode, Module> {
// createSentinel is used to get hold of a node that marks the end of
// the list...
NamedMDNode *createSentinel() const {
return static_cast<NamedMDNode*>(&Sentinel);
}
static void destroySentinel(NamedMDNode*) {}
NamedMDNode *provideInitialHead() const { return createSentinel(); }
NamedMDNode *ensureHead(NamedMDNode*) const { return createSentinel(); }
static void noteHead(NamedMDNode*, NamedMDNode*) {}
void addNodeToList(NamedMDNode *N);
void removeNodeFromList(NamedMDNode *N);
private:
mutable ilist_node<NamedMDNode> Sentinel;
};
/// A Module instance is used to store all the information related to an
/// LLVM module. Modules are the top level container of all other LLVM
/// Intermediate Representation (IR) objects. Each module directly contains a
/// list of globals variables, a list of functions, a list of libraries (or
/// other modules) this module depends on, a symbol table, and various data
/// about the target's characteristics.
///
/// A module maintains a GlobalValRefMap object that is used to hold all
/// constant references to global variables in the module. When a global
/// variable is destroyed, it should have no entries in the GlobalValueRefMap.
/// @brief The main container class for the LLVM Intermediate Representation.
class Module {
/// @name Types And Enumerations
/// @{
public:
/// The type for the list of global variables.
typedef iplist<GlobalVariable> GlobalListType;
/// The type for the list of functions.
typedef iplist<Function> FunctionListType;
/// The type for the list of aliases.
typedef iplist<GlobalAlias> AliasListType;
/// The type for the list of named metadata.
typedef iplist<NamedMDNode> NamedMDListType;
/// The type for the list of dependent libraries.
typedef std::vector<std::string> LibraryListType;
/// The Global Variable iterator.
typedef GlobalListType::iterator global_iterator;
/// The Global Variable constant iterator.
typedef GlobalListType::const_iterator const_global_iterator;
/// The Function iterators.
typedef FunctionListType::iterator iterator;
/// The Function constant iterator
typedef FunctionListType::const_iterator const_iterator;
/// The Global Alias iterators.
typedef AliasListType::iterator alias_iterator;
/// The Global Alias constant iterator
typedef AliasListType::const_iterator const_alias_iterator;
/// The named metadata iterators.
typedef NamedMDListType::iterator named_metadata_iterator;
/// The named metadata constant interators.
typedef NamedMDListType::const_iterator const_named_metadata_iterator;
/// The Library list iterator.
typedef LibraryListType::const_iterator lib_iterator;
/// An enumeration for describing the endianess of the target machine.
enum Endianness { AnyEndianness, LittleEndian, BigEndian };
/// An enumeration for describing the size of a pointer on the target machine.
enum PointerSize { AnyPointerSize, Pointer32, Pointer64 };
/// @}
/// @name Member Variables
/// @{
private:
LLVMContext &Context; ///< The LLVMContext from which types and
///< constants are allocated.
GlobalListType GlobalList; ///< The Global Variables in the module
FunctionListType FunctionList; ///< The Functions in the module
AliasListType AliasList; ///< The Aliases in the module
LibraryListType LibraryList; ///< The Libraries needed by the module
NamedMDListType NamedMDList; ///< The named metadata in the module
std::string GlobalScopeAsm; ///< Inline Asm at global scope.
ValueSymbolTable *ValSymTab; ///< Symbol table for values
TypeSymbolTable *TypeSymTab; ///< Symbol table for types
OwningPtr<GVMaterializer> Materializer; ///< Used to materialize GlobalValues
std::string ModuleID; ///< Human readable identifier for the module
std::string TargetTriple; ///< Platform target triple Module compiled on
std::string DataLayout; ///< Target data description
MDSymbolTable *NamedMDSymTab; ///< NamedMDNode names.
friend class Constant;
/// @}
/// @name Constructors
/// @{
public:
/// The Module constructor. Note that there is no default constructor. You
/// must provide a name for the module upon construction.
explicit Module(StringRef ModuleID, LLVMContext& C);
/// The module destructor. This will dropAllReferences.
~Module();
/// @}
/// @name Module Level Accessors
/// @{
/// Get the module identifier which is, essentially, the name of the module.
/// @returns the module identifier as a string
const std::string &getModuleIdentifier() const { return ModuleID; }
/// Get the data layout string for the module's target platform. This encodes
/// the type sizes and alignments expected by this module.
/// @returns the data layout as a string
const std::string &getDataLayout() const { return DataLayout; }
/// Get the target triple which is a string describing the target host.
/// @returns a string containing the target triple.
const std::string &getTargetTriple() const { return TargetTriple; }
/// Get the target endian information.
/// @returns Endianess - an enumeration for the endianess of the target
Endianness getEndianness() const;
/// Get the target pointer size.
/// @returns PointerSize - an enumeration for the size of the target's pointer
PointerSize getPointerSize() const;
/// Get the global data context.
/// @returns LLVMContext - a container for LLVM's global information
LLVMContext &getContext() const { return Context; }
/// Get any module-scope inline assembly blocks.
/// @returns a string containing the module-scope inline assembly blocks.
const std::string &getModuleInlineAsm() const { return GlobalScopeAsm; }
/// @}
/// @name Module Level Mutators
/// @{
/// Set the module identifier.
void setModuleIdentifier(StringRef ID) { ModuleID = ID; }
/// Set the data layout
void setDataLayout(StringRef DL) { DataLayout = DL; }
/// Set the target triple.
void setTargetTriple(StringRef T) { TargetTriple = T; }
/// Set the module-scope inline assembly blocks.
void setModuleInlineAsm(StringRef Asm) { GlobalScopeAsm = Asm; }
/// Append to the module-scope inline assembly blocks, automatically inserting
/// a separating newline if necessary.
void appendModuleInlineAsm(StringRef Asm) {
if (!GlobalScopeAsm.empty() &&
GlobalScopeAsm[GlobalScopeAsm.size()-1] != '\n')
GlobalScopeAsm += '\n';
GlobalScopeAsm += Asm;
}
/// @}
/// @name Generic Value Accessors
/// @{
/// getNamedValue - Return the first global value in the module with
/// the specified name, of arbitrary type. This method returns null
/// if a global with the specified name is not found.
GlobalValue *getNamedValue(StringRef Name) const;
/// getMDKindID - Return a unique non-zero ID for the specified metadata kind.
/// This ID is uniqued across modules in the current LLVMContext.
unsigned getMDKindID(StringRef Name) const;
/// getMDKindNames - Populate client supplied SmallVector with the name for
/// custom metadata IDs registered in this LLVMContext. ID #0 is not used,
/// so it is filled in as an empty string.
void getMDKindNames(SmallVectorImpl<StringRef> &Result) const;
/// @}
/// @name Function Accessors
/// @{
/// getOrInsertFunction - Look up the specified function in the module symbol
/// table. Four possibilities:
/// 1. If it does not exist, add a prototype for the function and return it.
/// 2. If it exists, and has a local linkage, the existing function is
/// renamed and a new one is inserted.
/// 3. Otherwise, if the existing function has the correct prototype, return
/// the existing function.
/// 4. Finally, the function exists but has the wrong prototype: return the
/// function with a constantexpr cast to the right prototype.
Constant *getOrInsertFunction(StringRef Name, const FunctionType *T,
AttrListPtr AttributeList);
Constant *getOrInsertFunction(StringRef Name, const FunctionType *T);
/// getOrInsertFunction - Look up the specified function in the module symbol
/// table. If it does not exist, add a prototype for the function and return
/// it. This function guarantees to return a constant of pointer to the
/// specified function type or a ConstantExpr BitCast of that type if the
/// named function has a different type. This version of the method takes a
/// null terminated list of function arguments, which makes it easier for
/// clients to use.
Constant *getOrInsertFunction(StringRef Name,
AttrListPtr AttributeList,
const Type *RetTy, ...) END_WITH_NULL;
/// getOrInsertFunction - Same as above, but without the attributes.
Constant *getOrInsertFunction(StringRef Name, const Type *RetTy, ...)
END_WITH_NULL;
Constant *getOrInsertTargetIntrinsic(StringRef Name,
const FunctionType *Ty,
AttrListPtr AttributeList);
/// getFunction - Look up the specified function in the module symbol table.
/// If it does not exist, return null.
Function *getFunction(StringRef Name) const;
/// @}
/// @name Global Variable Accessors
/// @{
/// getGlobalVariable - Look up the specified global variable in the module
/// symbol table. If it does not exist, return null. If AllowInternal is set
/// to true, this function will return types that have InternalLinkage. By
/// default, these types are not returned.
GlobalVariable *getGlobalVariable(StringRef Name,
bool AllowInternal = false) const;
/// getNamedGlobal - Return the first global variable in the module with the
/// specified name, of arbitrary type. This method returns null if a global
/// with the specified name is not found.
GlobalVariable *getNamedGlobal(StringRef Name) const {
return getGlobalVariable(Name, true);
}
/// getOrInsertGlobal - Look up the specified global in the module symbol
/// table.
/// 1. If it does not exist, add a declaration of the global and return it.
/// 2. Else, the global exists but has the wrong type: return the function
/// with a constantexpr cast to the right type.
/// 3. Finally, if the existing global is the correct delclaration, return
/// the existing global.
Constant *getOrInsertGlobal(StringRef Name, const Type *Ty);
/// @}
/// @name Global Alias Accessors
/// @{
/// getNamedAlias - Return the first global alias in the module with the
/// specified name, of arbitrary type. This method returns null if a global
/// with the specified name is not found.
GlobalAlias *getNamedAlias(StringRef Name) const;
/// @}
/// @name Named Metadata Accessors
/// @{
/// getNamedMetadata - Return the first NamedMDNode in the module with the
/// specified name. This method returns null if a NamedMDNode with the
/// specified name is not found.
NamedMDNode *getNamedMetadata(StringRef Name) const;
NamedMDNode *getNamedMetadataUsingTwine(Twine Name) const;
/// getOrInsertNamedMetadata - Return the first named MDNode in the module
/// with the specified name. This method returns a new NamedMDNode if a
/// NamedMDNode with the specified name is not found.
NamedMDNode *getOrInsertNamedMetadata(StringRef Name);
/// @}
/// @name Type Accessors
/// @{
/// addTypeName - Insert an entry in the symbol table mapping Str to Type. If
/// there is already an entry for this name, true is returned and the symbol
/// table is not modified.
bool addTypeName(StringRef Name, const Type *Ty);
/// getTypeName - If there is at least one entry in the symbol table for the
/// specified type, return it.
std::string getTypeName(const Type *Ty) const;
/// getTypeByName - Return the type with the specified name in this module, or
/// null if there is none by that name.
const Type *getTypeByName(StringRef Name) const;
/// @}
/// @name Materialization
/// @{
/// setMaterializer - Sets the GVMaterializer to GVM. This module must not
/// yet have a Materializer. To reset the materializer for a module that
/// already has one, call MaterializeAllPermanently first. Destroying this
/// module will destroy its materializer without materializing any more
/// GlobalValues. Without destroying the Module, there is no way to detach or
/// destroy a materializer without materializing all the GVs it controls, to
/// avoid leaving orphan unmaterialized GVs.
void setMaterializer(GVMaterializer *GVM);
/// getMaterializer - Retrieves the GVMaterializer, if any, for this Module.
GVMaterializer *getMaterializer() const { return Materializer.get(); }
/// isMaterializable - True if the definition of GV has yet to be materialized
/// from the GVMaterializer.
bool isMaterializable(const GlobalValue *GV) const;
/// isDematerializable - Returns true if this GV was loaded from this Module's
/// GVMaterializer and the GVMaterializer knows how to dematerialize the GV.
bool isDematerializable(const GlobalValue *GV) const;
/// Materialize - Make sure the GlobalValue is fully read. If the module is
/// corrupt, this returns true and fills in the optional string with
/// information about the problem. If successful, this returns false.
bool Materialize(GlobalValue *GV, std::string *ErrInfo = 0);
/// Dematerialize - If the GlobalValue is read in, and if the GVMaterializer
/// supports it, release the memory for the function, and set it up to be
/// materialized lazily. If !isDematerializable(), this method is a noop.
void Dematerialize(GlobalValue *GV);
/// MaterializeAll - Make sure all GlobalValues in this Module are fully read.
/// If the module is corrupt, this returns true and fills in the optional
/// string with information about the problem. If successful, this returns
/// false.
bool MaterializeAll(std::string *ErrInfo = 0);
/// MaterializeAllPermanently - Make sure all GlobalValues in this Module are
/// fully read and clear the Materializer. If the module is corrupt, this
/// returns true, fills in the optional string with information about the
/// problem, and DOES NOT clear the old Materializer. If successful, this
/// returns false.
bool MaterializeAllPermanently(std::string *ErrInfo = 0);
/// @}
/// @name Direct access to the globals list, functions list, and symbol table
/// @{
/// Get the Module's list of global variables (constant).
const GlobalListType &getGlobalList() const { return GlobalList; }
/// Get the Module's list of global variables.
GlobalListType &getGlobalList() { return GlobalList; }
static iplist<GlobalVariable> Module::*getSublistAccess(GlobalVariable*) {
return &Module::GlobalList;
}
/// Get the Module's list of functions (constant).
const FunctionListType &getFunctionList() const { return FunctionList; }
/// Get the Module's list of functions.
FunctionListType &getFunctionList() { return FunctionList; }
static iplist<Function> Module::*getSublistAccess(Function*) {
return &Module::FunctionList;
}
/// Get the Module's list of aliases (constant).
const AliasListType &getAliasList() const { return AliasList; }
/// Get the Module's list of aliases.
AliasListType &getAliasList() { return AliasList; }
static iplist<GlobalAlias> Module::*getSublistAccess(GlobalAlias*) {
return &Module::AliasList;
}
/// Get the Module's list of named metadata (constant).
const NamedMDListType &getNamedMDList() const { return NamedMDList; }
/// Get the Module's list of named metadata.
NamedMDListType &getNamedMDList() { return NamedMDList; }
static iplist<NamedMDNode> Module::*getSublistAccess(NamedMDNode *) {
return &Module::NamedMDList;
}
/// Get the symbol table of global variable and function identifiers
const ValueSymbolTable &getValueSymbolTable() const { return *ValSymTab; }
/// Get the Module's symbol table of global variable and function identifiers.
ValueSymbolTable &getValueSymbolTable() { return *ValSymTab; }
/// Get the symbol table of types
const TypeSymbolTable &getTypeSymbolTable() const { return *TypeSymTab; }
/// Get the Module's symbol table of types
TypeSymbolTable &getTypeSymbolTable() { return *TypeSymTab; }
/// Get the symbol table of named metadata
const MDSymbolTable &getMDSymbolTable() const { return *NamedMDSymTab; }
/// Get the Module's symbol table of named metadata
MDSymbolTable &getMDSymbolTable() { return *NamedMDSymTab; }
/// @}
/// @name Global Variable Iteration
/// @{
/// Get an iterator to the first global variable
global_iterator global_begin() { return GlobalList.begin(); }
/// Get a constant iterator to the first global variable
const_global_iterator global_begin() const { return GlobalList.begin(); }
/// Get an iterator to the last global variable
global_iterator global_end () { return GlobalList.end(); }
/// Get a constant iterator to the last global variable
const_global_iterator global_end () const { return GlobalList.end(); }
/// Determine if the list of globals is empty.
bool global_empty() const { return GlobalList.empty(); }
/// @}
/// @name Function Iteration
/// @{
/// Get an iterator to the first function.
iterator begin() { return FunctionList.begin(); }
/// Get a constant iterator to the first function.
const_iterator begin() const { return FunctionList.begin(); }
/// Get an iterator to the last function.
iterator end () { return FunctionList.end(); }
/// Get a constant iterator to the last function.
const_iterator end () const { return FunctionList.end(); }
/// Determine how many functions are in the Module's list of functions.
size_t size() const { return FunctionList.size(); }
/// Determine if the list of functions is empty.
bool empty() const { return FunctionList.empty(); }
/// @}
/// @name Dependent Library Iteration
/// @{
/// @brief Get a constant iterator to beginning of dependent library list.
inline lib_iterator lib_begin() const { return LibraryList.begin(); }
/// @brief Get a constant iterator to end of dependent library list.
inline lib_iterator lib_end() const { return LibraryList.end(); }
/// @brief Returns the number of items in the list of libraries.
inline size_t lib_size() const { return LibraryList.size(); }
/// @brief Add a library to the list of dependent libraries
void addLibrary(StringRef Lib);
/// @brief Remove a library from the list of dependent libraries
void removeLibrary(StringRef Lib);
/// @brief Get all the libraries
inline const LibraryListType& getLibraries() const { return LibraryList; }
/// @}
/// @name Alias Iteration
/// @{
/// Get an iterator to the first alias.
alias_iterator alias_begin() { return AliasList.begin(); }
/// Get a constant iterator to the first alias.
const_alias_iterator alias_begin() const { return AliasList.begin(); }
/// Get an iterator to the last alias.
alias_iterator alias_end () { return AliasList.end(); }
/// Get a constant iterator to the last alias.
const_alias_iterator alias_end () const { return AliasList.end(); }
/// Determine how many aliases are in the Module's list of aliases.
size_t alias_size () const { return AliasList.size(); }
/// Determine if the list of aliases is empty.
bool alias_empty() const { return AliasList.empty(); }
/// @}
/// @name Named Metadata Iteration
/// @{
/// Get an iterator to the first named metadata.
named_metadata_iterator named_metadata_begin() { return NamedMDList.begin(); }
/// Get a constant iterator to the first named metadata.
const_named_metadata_iterator named_metadata_begin() const {
return NamedMDList.begin();
}
/// Get an iterator to the last named metadata.
named_metadata_iterator named_metadata_end() { return NamedMDList.end(); }
/// Get a constant iterator to the last named metadata.
const_named_metadata_iterator named_metadata_end() const {
return NamedMDList.end();
}
/// Determine how many NamedMDNodes are in the Module's list of named metadata.
size_t named_metadata_size() const { return NamedMDList.size(); }
/// Determine if the list of named metadata is empty.
bool named_metadata_empty() const { return NamedMDList.empty(); }
/// @}
/// @name Utility functions for printing and dumping Module objects
/// @{
/// Print the module to an output stream with AssemblyAnnotationWriter.
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const;
/// Dump the module to stderr (for debugging).
void dump() const;
/// This function causes all the subinstructions to "let go" of all references
/// that they are maintaining. This allows one to 'delete' a whole class at
/// a time, even though there may be circular references... first all
/// references are dropped, and all use counts go to zero. Then everything
/// is delete'd for real. Note that no operations are valid on an object
/// that has "dropped all references", except operator delete.
void dropAllReferences();
/// @}
};
/// An raw_ostream inserter for modules.
inline raw_ostream &operator<<(raw_ostream &O, const Module &M) {
M.print(O, 0);
return O;
}
} // End llvm namespace
#endif