llvm-6502/include/llvm/Support/ValueHandle.h

410 lines
13 KiB
C
Raw Normal View History

//===- llvm/Support/ValueHandle.h - Value Smart Pointer classes -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the ValueHandle class and its sub-classes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_VALUEHANDLE_H
#define LLVM_SUPPORT_VALUEHANDLE_H
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/Value.h"
namespace llvm {
class ValueHandleBase;
// ValueHandleBase** is only 4-byte aligned.
template<>
class PointerLikeTypeTraits<ValueHandleBase**> {
public:
static inline void *getAsVoidPointer(ValueHandleBase** P) { return P; }
static inline ValueHandleBase **getFromVoidPointer(void *P) {
return static_cast<ValueHandleBase**>(P);
}
enum { NumLowBitsAvailable = 2 };
};
/// ValueHandleBase - This is the common base class of value handles.
/// ValueHandle's are smart pointers to Value's that have special behavior when
/// the value is deleted or ReplaceAllUsesWith'd. See the specific handles
/// below for details.
///
class ValueHandleBase {
friend class Value;
protected:
/// HandleBaseKind - This indicates what sub class the handle actually is.
/// This is to avoid having a vtable for the light-weight handle pointers. The
/// fully general Callback version does have a vtable.
enum HandleBaseKind {
Assert,
Callback,
Tracking,
Weak
};
private:
PointerIntPair<ValueHandleBase**, 2, HandleBaseKind> PrevPair;
ValueHandleBase *Next;
Value *VP;
explicit ValueHandleBase(const ValueHandleBase&); // DO NOT IMPLEMENT.
public:
explicit ValueHandleBase(HandleBaseKind Kind)
: PrevPair(0, Kind), Next(0), VP(0) {}
ValueHandleBase(HandleBaseKind Kind, Value *V)
: PrevPair(0, Kind), Next(0), VP(V) {
if (isValid(VP))
AddToUseList();
}
ValueHandleBase(HandleBaseKind Kind, const ValueHandleBase &RHS)
: PrevPair(0, Kind), Next(0), VP(RHS.VP) {
if (isValid(VP))
AddToExistingUseList(RHS.getPrevPtr());
}
~ValueHandleBase() {
if (isValid(VP))
RemoveFromUseList();
}
Value *operator=(Value *RHS) {
if (VP == RHS) return RHS;
if (isValid(VP)) RemoveFromUseList();
VP = RHS;
if (isValid(VP)) AddToUseList();
return RHS;
}
Value *operator=(const ValueHandleBase &RHS) {
if (VP == RHS.VP) return RHS.VP;
if (isValid(VP)) RemoveFromUseList();
VP = RHS.VP;
if (isValid(VP)) AddToExistingUseList(RHS.getPrevPtr());
return VP;
}
Value *operator->() const { return getValPtr(); }
Value &operator*() const { return *getValPtr(); }
protected:
Value *getValPtr() const { return VP; }
static bool isValid(Value *V) {
return V &&
V != DenseMapInfo<Value *>::getEmptyKey() &&
V != DenseMapInfo<Value *>::getTombstoneKey();
}
private:
// Callbacks made from Value.
static void ValueIsDeleted(Value *V);
static void ValueIsRAUWd(Value *Old, Value *New);
// Internal implementation details.
ValueHandleBase **getPrevPtr() const { return PrevPair.getPointer(); }
HandleBaseKind getKind() const { return PrevPair.getInt(); }
void setPrevPtr(ValueHandleBase **Ptr) { PrevPair.setPointer(Ptr); }
/// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
/// List is the address of either the head of the list or a Next node within
/// the existing use list.
void AddToExistingUseList(ValueHandleBase **List);
/// AddToExistingUseListAfter - Add this ValueHandle to the use list after
/// Node.
void AddToExistingUseListAfter(ValueHandleBase *Node);
/// AddToUseList - Add this ValueHandle to the use list for VP.
void AddToUseList();
/// RemoveFromUseList - Remove this ValueHandle from its current use list.
void RemoveFromUseList();
};
/// WeakVH - This is a value handle that tries hard to point to a Value, even
/// across RAUW operations, but will null itself out if the value is destroyed.
/// this is useful for advisory sorts of information, but should not be used as
/// the key of a map (since the map would have to rearrange itself when the
/// pointer changes).
class WeakVH : public ValueHandleBase {
public:
WeakVH() : ValueHandleBase(Weak) {}
WeakVH(Value *P) : ValueHandleBase(Weak, P) {}
WeakVH(const WeakVH &RHS)
: ValueHandleBase(Weak, RHS) {}
Value *operator=(Value *RHS) {
return ValueHandleBase::operator=(RHS);
}
Value *operator=(const ValueHandleBase &RHS) {
return ValueHandleBase::operator=(RHS);
}
operator Value*() const {
return getValPtr();
}
};
// Specialize simplify_type to allow WeakVH to participate in
// dyn_cast, isa, etc.
template<typename From> struct simplify_type;
template<> struct simplify_type<const WeakVH> {
typedef Value* SimpleType;
static SimpleType getSimplifiedValue(const WeakVH &WVH) {
return static_cast<Value *>(WVH);
}
};
template<> struct simplify_type<WeakVH> : public simplify_type<const WeakVH> {};
/// AssertingVH - This is a Value Handle that points to a value and asserts out
/// if the value is destroyed while the handle is still live. This is very
/// useful for catching dangling pointer bugs and other things which can be
/// non-obvious. One particularly useful place to use this is as the Key of a
/// map. Dangling pointer bugs often lead to really subtle bugs that only occur
/// if another object happens to get allocated to the same address as the old
/// one. Using an AssertingVH ensures that an assert is triggered as soon as
/// the bad delete occurs.
///
/// Note that an AssertingVH handle does *not* follow values across RAUW
/// operations. This means that RAUW's need to explicitly update the
/// AssertingVH's as it moves. This is required because in non-assert mode this
/// class turns into a trivial wrapper around a pointer.
template <typename ValueTy>
class AssertingVH
#ifndef NDEBUG
: public ValueHandleBase
#endif
{
#ifndef NDEBUG
ValueTy *getValPtr() const {
return static_cast<ValueTy*>(ValueHandleBase::getValPtr());
}
void setValPtr(ValueTy *P) {
ValueHandleBase::operator=(GetAsValue(P));
}
#else
ValueTy *ThePtr;
ValueTy *getValPtr() const { return ThePtr; }
void setValPtr(ValueTy *P) { ThePtr = P; }
#endif
// Convert a ValueTy*, which may be const, to the type the base
// class expects.
static Value *GetAsValue(Value *V) { return V; }
static Value *GetAsValue(const Value *V) { return const_cast<Value*>(V); }
public:
#ifndef NDEBUG
AssertingVH() : ValueHandleBase(Assert) {}
AssertingVH(ValueTy *P) : ValueHandleBase(Assert, GetAsValue(P)) {}
AssertingVH(const AssertingVH &RHS) : ValueHandleBase(Assert, RHS) {}
#else
AssertingVH() : ThePtr(0) {}
AssertingVH(ValueTy *P) : ThePtr(P) {}
#endif
operator ValueTy*() const {
return getValPtr();
}
ValueTy *operator=(ValueTy *RHS) {
setValPtr(RHS);
return getValPtr();
}
ValueTy *operator=(const AssertingVH<ValueTy> &RHS) {
setValPtr(RHS.getValPtr());
return getValPtr();
}
ValueTy *operator->() const { return getValPtr(); }
ValueTy &operator*() const { return *getValPtr(); }
};
// Specialize simplify_type to allow AssertingVH to participate in
// dyn_cast, isa, etc.
template<typename From> struct simplify_type;
template<> struct simplify_type<const AssertingVH<Value> > {
typedef Value* SimpleType;
static SimpleType getSimplifiedValue(const AssertingVH<Value> &AVH) {
return static_cast<Value *>(AVH);
}
};
template<> struct simplify_type<AssertingVH<Value> >
: public simplify_type<const AssertingVH<Value> > {};
// Specialize DenseMapInfo to allow AssertingVH to participate in DenseMap.
template<typename T>
struct DenseMapInfo<AssertingVH<T> > {
typedef DenseMapInfo<T*> PointerInfo;
static inline AssertingVH<T> getEmptyKey() {
return AssertingVH<T>(PointerInfo::getEmptyKey());
}
static inline T* getTombstoneKey() {
return AssertingVH<T>(PointerInfo::getTombstoneKey());
}
static unsigned getHashValue(const AssertingVH<T> &Val) {
return PointerInfo::getHashValue(Val);
}
static bool isEqual(const AssertingVH<T> &LHS, const AssertingVH<T> &RHS) {
return LHS == RHS;
}
};
template <typename T>
struct isPodLike<AssertingVH<T> > {
#ifdef NDEBUG
static const bool value = true;
#else
static const bool value = false;
#endif
};
/// TrackingVH - This is a value handle that tracks a Value (or Value subclass),
/// even across RAUW operations.
///
/// TrackingVH is designed for situations where a client needs to hold a handle
/// to a Value (or subclass) across some operations which may move that value,
/// but should never destroy it or replace it with some unacceptable type.
///
/// It is an error to do anything with a TrackingVH whose value has been
/// destroyed, except to destruct it.
///
/// It is an error to attempt to replace a value with one of a type which is
/// incompatible with any of its outstanding TrackingVHs.
template<typename ValueTy>
class TrackingVH : public ValueHandleBase {
void CheckValidity() const {
Value *VP = ValueHandleBase::getValPtr();
// Null is always ok.
if (!VP)
return;
// Check that this value is valid (i.e., it hasn't been deleted). We
// explicitly delay this check until access to avoid requiring clients to be
// unnecessarily careful w.r.t. destruction.
assert(ValueHandleBase::isValid(VP) && "Tracked Value was deleted!");
// Check that the value is a member of the correct subclass. We would like
// to check this property on assignment for better debugging, but we don't
// want to require a virtual interface on this VH. Instead we allow RAUW to
// replace this value with a value of an invalid type, and check it here.
assert(isa<ValueTy>(VP) &&
"Tracked Value was replaced by one with an invalid type!");
}
ValueTy *getValPtr() const {
CheckValidity();
return static_cast<ValueTy*>(ValueHandleBase::getValPtr());
}
void setValPtr(ValueTy *P) {
CheckValidity();
ValueHandleBase::operator=(GetAsValue(P));
}
// Convert a ValueTy*, which may be const, to the type the base
// class expects.
static Value *GetAsValue(Value *V) { return V; }
static Value *GetAsValue(const Value *V) { return const_cast<Value*>(V); }
public:
TrackingVH() : ValueHandleBase(Tracking) {}
TrackingVH(ValueTy *P) : ValueHandleBase(Tracking, P) {}
TrackingVH(const TrackingVH &RHS) : ValueHandleBase(Tracking, RHS) {}
operator ValueTy*() const {
return getValPtr();
}
ValueTy *operator=(ValueTy *RHS) {
setValPtr(RHS);
return getValPtr();
}
ValueTy *operator=(const TrackingVH<ValueTy> &RHS) {
setValPtr(RHS.getValPtr());
return getValPtr();
}
ValueTy *operator->() const { return getValPtr(); }
ValueTy &operator*() const { return *getValPtr(); }
};
// Specialize simplify_type to allow TrackingVH to participate in
// dyn_cast, isa, etc.
template<typename From> struct simplify_type;
template<> struct simplify_type<const TrackingVH<Value> > {
typedef Value* SimpleType;
static SimpleType getSimplifiedValue(const TrackingVH<Value> &AVH) {
return static_cast<Value *>(AVH);
}
};
template<> struct simplify_type<TrackingVH<Value> >
: public simplify_type<const TrackingVH<Value> > {};
/// CallbackVH - This is a value handle that allows subclasses to define
/// callbacks that run when the underlying Value has RAUW called on it or is
/// destroyed. This class can be used as the key of a map, as long as the user
/// takes it out of the map before calling setValPtr() (since the map has to
/// rearrange itself when the pointer changes). Unlike ValueHandleBase, this
/// class has a vtable and a virtual destructor.
class CallbackVH : public ValueHandleBase {
protected:
CallbackVH(const CallbackVH &RHS)
: ValueHandleBase(Callback, RHS) {}
virtual ~CallbackVH();
void setValPtr(Value *P) {
ValueHandleBase::operator=(P);
}
public:
CallbackVH() : ValueHandleBase(Callback) {}
CallbackVH(Value *P) : ValueHandleBase(Callback, P) {}
operator Value*() const {
return getValPtr();
}
/// Called when this->getValPtr() is destroyed, inside ~Value(), so you may
/// call any non-virtual Value method on getValPtr(), but no subclass methods.
/// If WeakVH were implemented as a CallbackVH, it would use this method to
/// call setValPtr(NULL). AssertingVH would use this method to cause an
/// assertion failure.
///
/// All implementations must remove the reference from this object to the
/// Value that's being destroyed.
virtual void deleted() {
setValPtr(NULL);
}
/// Called when this->getValPtr()->replaceAllUsesWith(new_value) is called,
/// _before_ any of the uses have actually been replaced. If WeakVH were
/// implemented as a CallbackVH, it would use this method to call
/// setValPtr(new_value). AssertingVH would do nothing in this method.
virtual void allUsesReplacedWith(Value *) {}
};
// Specialize simplify_type to allow CallbackVH to participate in
// dyn_cast, isa, etc.
template<typename From> struct simplify_type;
template<> struct simplify_type<const CallbackVH> {
typedef Value* SimpleType;
static SimpleType getSimplifiedValue(const CallbackVH &CVH) {
return static_cast<Value *>(CVH);
}
};
template<> struct simplify_type<CallbackVH>
: public simplify_type<const CallbackVH> {};
} // End llvm namespace
#endif