llvm-6502/include/llvm/ExecutionEngine/RTDyldMemoryManager.h

81 lines
3.5 KiB
C
Raw Normal View History

//===-- RTDyldMemoryManager.cpp - Memory manager for MC-JIT -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Interface of the runtime dynamic memory manager base class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_RT_DYLD_MEMORY_MANAGER_H
#define LLVM_EXECUTIONENGINE_RT_DYLD_MEMORY_MANAGER_H
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/Memory.h"
#include "llvm-c/ExecutionEngine.h"
namespace llvm {
// RuntimeDyld clients often want to handle the memory management of
// what gets placed where. For JIT clients, this is the subset of
// JITMemoryManager required for dynamic loading of binaries.
//
// FIXME: As the RuntimeDyld fills out, additional routines will be needed
// for the varying types of objects to be allocated.
class RTDyldMemoryManager {
RTDyldMemoryManager(const RTDyldMemoryManager&) LLVM_DELETED_FUNCTION;
void operator=(const RTDyldMemoryManager&) LLVM_DELETED_FUNCTION;
public:
RTDyldMemoryManager() {}
virtual ~RTDyldMemoryManager();
/// Allocate a memory block of (at least) the given size suitable for
/// executable code. The SectionID is a unique identifier assigned by the JIT
/// engine, and optionally recorded by the memory manager to access a loaded
/// section.
virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID) = 0;
/// Allocate a memory block of (at least) the given size suitable for data.
/// The SectionID is a unique identifier assigned by the JIT engine, and
/// optionally recorded by the memory manager to access a loaded section.
virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID, bool IsReadOnly) = 0;
/// Register the EH frames with the runtime so that c++ exceptions work.
virtual void registerEHFrames(StringRef SectionData);
/// This method returns the address of the specified function. As such it is
/// only useful for resolving library symbols, not code generated symbols.
///
/// If \p AbortOnFailure is false and no function with the given name is
/// found, this function returns a null pointer. Otherwise, it prints a
/// message to stderr and aborts.
virtual void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true);
/// This method is called when object loading is complete and section page
/// permissions can be applied. It is up to the memory manager implementation
/// to decide whether or not to act on this method. The memory manager will
/// typically allocate all sections as read-write and then apply specific
/// permissions when this method is called. Code sections cannot be executed
/// until this function has been called. In addition, any cache coherency
/// operations needed to reliably use the memory are also performed.
///
/// Returns true if an error occurred, false otherwise.
virtual bool finalizeMemory(std::string *ErrMsg = 0) = 0;
};
// Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(
RTDyldMemoryManager, LLVMMCJITMemoryManagerRef)
} // namespace llvm
#endif // LLVM_EXECUTIONENGINE_RT_DYLD_MEMORY_MANAGER_H