2014-05-01 18:38:36 +00:00
|
|
|
//===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// Loop unrolling may create many similar GEPs for array accesses.
|
|
|
|
// e.g., a 2-level loop
|
|
|
|
//
|
|
|
|
// float a[32][32]; // global variable
|
|
|
|
//
|
|
|
|
// for (int i = 0; i < 2; ++i) {
|
|
|
|
// for (int j = 0; j < 2; ++j) {
|
|
|
|
// ...
|
|
|
|
// ... = a[x + i][y + j];
|
|
|
|
// ...
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// will probably be unrolled to:
|
|
|
|
//
|
|
|
|
// gep %a, 0, %x, %y; load
|
|
|
|
// gep %a, 0, %x, %y + 1; load
|
|
|
|
// gep %a, 0, %x + 1, %y; load
|
|
|
|
// gep %a, 0, %x + 1, %y + 1; load
|
|
|
|
//
|
|
|
|
// LLVM's GVN does not use partial redundancy elimination yet, and is thus
|
|
|
|
// unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
|
|
|
|
// significant slowdown in targets with limited addressing modes. For instance,
|
|
|
|
// because the PTX target does not support the reg+reg addressing mode, the
|
|
|
|
// NVPTX backend emits PTX code that literally computes the pointer address of
|
|
|
|
// each GEP, wasting tons of registers. It emits the following PTX for the
|
|
|
|
// first load and similar PTX for other loads.
|
|
|
|
//
|
|
|
|
// mov.u32 %r1, %x;
|
|
|
|
// mov.u32 %r2, %y;
|
|
|
|
// mul.wide.u32 %rl2, %r1, 128;
|
|
|
|
// mov.u64 %rl3, a;
|
|
|
|
// add.s64 %rl4, %rl3, %rl2;
|
|
|
|
// mul.wide.u32 %rl5, %r2, 4;
|
|
|
|
// add.s64 %rl6, %rl4, %rl5;
|
|
|
|
// ld.global.f32 %f1, [%rl6];
|
|
|
|
//
|
|
|
|
// To reduce the register pressure, the optimization implemented in this file
|
|
|
|
// merges the common part of a group of GEPs, so we can compute each pointer
|
|
|
|
// address by adding a simple offset to the common part, saving many registers.
|
|
|
|
//
|
|
|
|
// It works by splitting each GEP into a variadic base and a constant offset.
|
|
|
|
// The variadic base can be computed once and reused by multiple GEPs, and the
|
|
|
|
// constant offsets can be nicely folded into the reg+immediate addressing mode
|
|
|
|
// (supported by most targets) without using any extra register.
|
|
|
|
//
|
|
|
|
// For instance, we transform the four GEPs and four loads in the above example
|
|
|
|
// into:
|
|
|
|
//
|
|
|
|
// base = gep a, 0, x, y
|
|
|
|
// load base
|
|
|
|
// laod base + 1 * sizeof(float)
|
|
|
|
// load base + 32 * sizeof(float)
|
|
|
|
// load base + 33 * sizeof(float)
|
|
|
|
//
|
|
|
|
// Given the transformed IR, a backend that supports the reg+immediate
|
|
|
|
// addressing mode can easily fold the pointer arithmetics into the loads. For
|
|
|
|
// example, the NVPTX backend can easily fold the pointer arithmetics into the
|
|
|
|
// ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
|
|
|
|
//
|
|
|
|
// mov.u32 %r1, %tid.x;
|
|
|
|
// mov.u32 %r2, %tid.y;
|
|
|
|
// mul.wide.u32 %rl2, %r1, 128;
|
|
|
|
// mov.u64 %rl3, a;
|
|
|
|
// add.s64 %rl4, %rl3, %rl2;
|
|
|
|
// mul.wide.u32 %rl5, %r2, 4;
|
|
|
|
// add.s64 %rl6, %rl4, %rl5;
|
|
|
|
// ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX
|
|
|
|
// ld.global.f32 %f2, [%rl6+4]; // much better
|
|
|
|
// ld.global.f32 %f3, [%rl6+128]; // much better
|
|
|
|
// ld.global.f32 %f4, [%rl6+132]; // much better
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
|
|
#include "llvm/IR/Constants.h"
|
|
|
|
#include "llvm/IR/DataLayout.h"
|
|
|
|
#include "llvm/IR/Instructions.h"
|
|
|
|
#include "llvm/IR/LLVMContext.h"
|
|
|
|
#include "llvm/IR/Module.h"
|
|
|
|
#include "llvm/IR/Operator.h"
|
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
|
|
|
|
"disable-separate-const-offset-from-gep", cl::init(false),
|
|
|
|
cl::desc("Do not separate the constant offset from a GEP instruction"),
|
|
|
|
cl::Hidden);
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
/// \brief A helper class for separating a constant offset from a GEP index.
|
|
|
|
///
|
|
|
|
/// In real programs, a GEP index may be more complicated than a simple addition
|
|
|
|
/// of something and a constant integer which can be trivially splitted. For
|
|
|
|
/// example, to split ((a << 3) | 5) + b, we need to search deeper for the
|
2014-05-15 01:52:21 +00:00
|
|
|
/// constant offset, so that we can separate the index to (a << 3) + b and 5.
|
2014-05-01 18:38:36 +00:00
|
|
|
///
|
|
|
|
/// Therefore, this class looks into the expression that computes a given GEP
|
|
|
|
/// index, and tries to find a constant integer that can be hoisted to the
|
|
|
|
/// outermost level of the expression as an addition. Not every constant in an
|
|
|
|
/// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
|
|
|
|
/// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
|
|
|
|
/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
|
|
|
|
class ConstantOffsetExtractor {
|
|
|
|
public:
|
|
|
|
/// Extracts a constant offset from the given GEP index. It outputs the
|
|
|
|
/// numeric value of the extracted constant offset (0 if failed), and a
|
|
|
|
/// new index representing the remainder (equal to the original index minus
|
|
|
|
/// the constant offset).
|
|
|
|
/// \p Idx The given GEP index
|
|
|
|
/// \p NewIdx The new index to replace
|
|
|
|
/// \p DL The datalayout of the module
|
|
|
|
/// \p IP Calculating the new index requires new instructions. IP indicates
|
|
|
|
/// where to insert them (typically right before the GEP).
|
|
|
|
static int64_t Extract(Value *Idx, Value *&NewIdx, const DataLayout *DL,
|
|
|
|
Instruction *IP);
|
|
|
|
/// Looks for a constant offset without extracting it. The meaning of the
|
|
|
|
/// arguments and the return value are the same as Extract.
|
|
|
|
static int64_t Find(Value *Idx, const DataLayout *DL);
|
|
|
|
|
|
|
|
private:
|
|
|
|
ConstantOffsetExtractor(const DataLayout *Layout, Instruction *InsertionPt)
|
|
|
|
: DL(Layout), IP(InsertionPt) {}
|
|
|
|
/// Searches the expression that computes V for a constant offset. If the
|
|
|
|
/// searching is successful, update UserChain as a path from V to the constant
|
|
|
|
/// offset.
|
|
|
|
int64_t find(Value *V);
|
|
|
|
/// A helper function to look into both operands of a binary operator U.
|
|
|
|
/// \p IsSub Whether U is a sub operator. If so, we need to negate the
|
|
|
|
/// constant offset at some point.
|
|
|
|
int64_t findInEitherOperand(User *U, bool IsSub);
|
|
|
|
/// After finding the constant offset and how it is reached from the GEP
|
|
|
|
/// index, we build a new index which is a clone of the old one except the
|
|
|
|
/// constant offset is removed. For example, given (a + (b + 5)) and knowning
|
|
|
|
/// the constant offset is 5, this function returns (a + b).
|
|
|
|
///
|
|
|
|
/// We cannot simply change the constant to zero because the expression that
|
|
|
|
/// computes the index or its intermediate result may be used by others.
|
|
|
|
Value *rebuildWithoutConstantOffset();
|
|
|
|
// A helper function for rebuildWithoutConstantOffset that rebuilds the direct
|
|
|
|
// user (U) of the constant offset (C).
|
|
|
|
Value *rebuildLeafWithoutConstantOffset(User *U, Value *C);
|
|
|
|
/// Returns a clone of U except the first occurrence of From with To.
|
|
|
|
Value *cloneAndReplace(User *U, Value *From, Value *To);
|
|
|
|
|
|
|
|
/// Returns true if LHS and RHS have no bits in common, i.e., LHS | RHS == 0.
|
|
|
|
bool NoCommonBits(Value *LHS, Value *RHS) const;
|
|
|
|
/// Computes which bits are known to be one or zero.
|
|
|
|
/// \p KnownOne Mask of all bits that are known to be one.
|
|
|
|
/// \p KnownZero Mask of all bits that are known to be zero.
|
|
|
|
void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const;
|
|
|
|
/// Finds the first use of Used in U. Returns -1 if not found.
|
|
|
|
static unsigned FindFirstUse(User *U, Value *Used);
|
|
|
|
|
|
|
|
/// The path from the constant offset to the old GEP index. e.g., if the GEP
|
|
|
|
/// index is "a * b + (c + 5)". After running function find, UserChain[0] will
|
|
|
|
/// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
|
|
|
|
/// UserChain[2] will be the entire expression "a * b + (c + 5)".
|
|
|
|
///
|
|
|
|
/// This path helps rebuildWithoutConstantOffset rebuild the new GEP index.
|
|
|
|
SmallVector<User *, 8> UserChain;
|
|
|
|
/// The data layout of the module. Used in ComputeKnownBits.
|
|
|
|
const DataLayout *DL;
|
|
|
|
Instruction *IP; /// Insertion position of cloned instructions.
|
|
|
|
};
|
|
|
|
|
|
|
|
/// \brief A pass that tries to split every GEP in the function into a variadic
|
2014-05-15 01:52:21 +00:00
|
|
|
/// base and a constant offset. It is a FunctionPass because searching for the
|
2014-05-01 18:38:36 +00:00
|
|
|
/// constant offset may inspect other basic blocks.
|
|
|
|
class SeparateConstOffsetFromGEP : public FunctionPass {
|
|
|
|
public:
|
|
|
|
static char ID;
|
|
|
|
SeparateConstOffsetFromGEP() : FunctionPass(ID) {
|
|
|
|
initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
|
|
|
|
}
|
|
|
|
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
|
|
AU.addRequired<DataLayoutPass>();
|
|
|
|
AU.addRequired<TargetTransformInfo>();
|
|
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
|
|
|
|
private:
|
|
|
|
/// Tries to split the given GEP into a variadic base and a constant offset,
|
|
|
|
/// and returns true if the splitting succeeds.
|
|
|
|
bool splitGEP(GetElementPtrInst *GEP);
|
|
|
|
/// Finds the constant offset within each index, and accumulates them. This
|
|
|
|
/// function only inspects the GEP without changing it. The output
|
|
|
|
/// NeedsExtraction indicates whether we can extract a non-zero constant
|
|
|
|
/// offset from any index.
|
|
|
|
int64_t accumulateByteOffset(GetElementPtrInst *GEP, const DataLayout *DL,
|
|
|
|
bool &NeedsExtraction);
|
|
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
|
|
|
|
char SeparateConstOffsetFromGEP::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(
|
|
|
|
SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
|
|
|
|
"Split GEPs to a variadic base and a constant offset for better CSE", false,
|
|
|
|
false)
|
|
|
|
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(DataLayoutPass)
|
|
|
|
INITIALIZE_PASS_END(
|
|
|
|
SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
|
|
|
|
"Split GEPs to a variadic base and a constant offset for better CSE", false,
|
|
|
|
false)
|
|
|
|
|
|
|
|
FunctionPass *llvm::createSeparateConstOffsetFromGEPPass() {
|
|
|
|
return new SeparateConstOffsetFromGEP();
|
|
|
|
}
|
|
|
|
|
|
|
|
int64_t ConstantOffsetExtractor::findInEitherOperand(User *U, bool IsSub) {
|
|
|
|
assert(U->getNumOperands() == 2);
|
|
|
|
int64_t ConstantOffset = find(U->getOperand(0));
|
|
|
|
// If we found a constant offset in the left operand, stop and return that.
|
|
|
|
// This shortcut might cause us to miss opportunities of combining the
|
|
|
|
// constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
|
|
|
|
// However, such cases are probably already handled by -instcombine,
|
|
|
|
// given this pass runs after the standard optimizations.
|
|
|
|
if (ConstantOffset != 0) return ConstantOffset;
|
|
|
|
ConstantOffset = find(U->getOperand(1));
|
|
|
|
// If U is a sub operator, negate the constant offset found in the right
|
|
|
|
// operand.
|
|
|
|
return IsSub ? -ConstantOffset : ConstantOffset;
|
|
|
|
}
|
|
|
|
|
|
|
|
int64_t ConstantOffsetExtractor::find(Value *V) {
|
|
|
|
// TODO(jingyue): We can even trace into integer/pointer casts, such as
|
|
|
|
// inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
|
|
|
|
// integers because it gives good enough results for our benchmarks.
|
|
|
|
assert(V->getType()->isIntegerTy());
|
|
|
|
|
|
|
|
User *U = dyn_cast<User>(V);
|
|
|
|
// We cannot do much with Values that are not a User, such as BasicBlock and
|
|
|
|
// MDNode.
|
|
|
|
if (U == nullptr) return 0;
|
|
|
|
|
|
|
|
int64_t ConstantOffset = 0;
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(U)) {
|
|
|
|
// Hooray, we found it!
|
|
|
|
ConstantOffset = CI->getSExtValue();
|
|
|
|
} else if (Operator *O = dyn_cast<Operator>(U)) {
|
|
|
|
// The GEP index may be more complicated than a simple addition of a
|
|
|
|
// varaible and a constant. Therefore, we trace into subexpressions for more
|
|
|
|
// hoisting opportunities.
|
|
|
|
switch (O->getOpcode()) {
|
|
|
|
case Instruction::Add: {
|
|
|
|
ConstantOffset = findInEitherOperand(U, false);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case Instruction::Sub: {
|
|
|
|
ConstantOffset = findInEitherOperand(U, true);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case Instruction::Or: {
|
|
|
|
// If LHS and RHS don't have common bits, (LHS | RHS) is equivalent to
|
|
|
|
// (LHS + RHS).
|
|
|
|
if (NoCommonBits(U->getOperand(0), U->getOperand(1)))
|
|
|
|
ConstantOffset = findInEitherOperand(U, false);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case Instruction::SExt: {
|
|
|
|
// For safety, we trace into sext only when its operand is marked
|
|
|
|
// "nsw" because xxx.nsw guarantees no signed wrap. e.g., we can safely
|
|
|
|
// transform "sext (add nsw a, 5)" into "add nsw (sext a), 5".
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) {
|
|
|
|
if (BO->hasNoSignedWrap())
|
|
|
|
ConstantOffset = find(U->getOperand(0));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case Instruction::ZExt: {
|
|
|
|
// Similarly, we trace into zext only when its operand is marked with
|
|
|
|
// "nuw" because zext (add nuw a, b) == add nuw (zext a), (zext b).
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) {
|
|
|
|
if (BO->hasNoUnsignedWrap())
|
|
|
|
ConstantOffset = find(U->getOperand(0));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// If we found a non-zero constant offset, adds it to the path for future
|
|
|
|
// transformation (rebuildWithoutConstantOffset). Zero is a valid constant
|
|
|
|
// offset, but doesn't help this optimization.
|
|
|
|
if (ConstantOffset != 0)
|
|
|
|
UserChain.push_back(U);
|
|
|
|
return ConstantOffset;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned ConstantOffsetExtractor::FindFirstUse(User *U, Value *Used) {
|
|
|
|
for (unsigned I = 0, E = U->getNumOperands(); I < E; ++I) {
|
|
|
|
if (U->getOperand(I) == Used)
|
|
|
|
return I;
|
|
|
|
}
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
Value *ConstantOffsetExtractor::cloneAndReplace(User *U, Value *From,
|
|
|
|
Value *To) {
|
|
|
|
// Finds in U the first use of From. It is safe to ignore future occurrences
|
|
|
|
// of From, because findInEitherOperand similarly stops searching the right
|
|
|
|
// operand when the first operand has a non-zero constant offset.
|
|
|
|
unsigned OpNo = FindFirstUse(U, From);
|
|
|
|
assert(OpNo != (unsigned)-1 && "UserChain wasn't built correctly");
|
|
|
|
|
|
|
|
// ConstantOffsetExtractor::find only follows Operators (i.e., Instructions
|
|
|
|
// and ConstantExprs). Therefore, U is either an Instruction or a
|
|
|
|
// ConstantExpr.
|
|
|
|
if (Instruction *I = dyn_cast<Instruction>(U)) {
|
|
|
|
Instruction *Clone = I->clone();
|
|
|
|
Clone->setOperand(OpNo, To);
|
|
|
|
Clone->insertBefore(IP);
|
|
|
|
return Clone;
|
|
|
|
}
|
|
|
|
// cast<Constant>(To) is safe because a ConstantExpr only uses Constants.
|
|
|
|
return cast<ConstantExpr>(U)
|
|
|
|
->getWithOperandReplaced(OpNo, cast<Constant>(To));
|
|
|
|
}
|
|
|
|
|
|
|
|
Value *ConstantOffsetExtractor::rebuildLeafWithoutConstantOffset(User *U,
|
|
|
|
Value *C) {
|
|
|
|
assert(U->getNumOperands() <= 2 &&
|
|
|
|
"We didn't trace into any operator with more than 2 operands");
|
|
|
|
// If U has only one operand which is the constant offset, removing the
|
|
|
|
// constant offset leaves U as a null value.
|
|
|
|
if (U->getNumOperands() == 1)
|
|
|
|
return Constant::getNullValue(U->getType());
|
|
|
|
|
|
|
|
// U->getNumOperands() == 2
|
|
|
|
unsigned OpNo = FindFirstUse(U, C); // U->getOperand(OpNo) == C
|
|
|
|
assert(OpNo < 2 && "UserChain wasn't built correctly");
|
|
|
|
Value *TheOther = U->getOperand(1 - OpNo); // The other operand of U
|
|
|
|
// If U = C - X, removing C makes U = -X; otherwise U will simply be X.
|
|
|
|
if (!isa<SubOperator>(U) || OpNo == 1)
|
|
|
|
return TheOther;
|
|
|
|
if (isa<ConstantExpr>(U))
|
|
|
|
return ConstantExpr::getNeg(cast<Constant>(TheOther));
|
|
|
|
return BinaryOperator::CreateNeg(TheOther, "", IP);
|
|
|
|
}
|
|
|
|
|
|
|
|
Value *ConstantOffsetExtractor::rebuildWithoutConstantOffset() {
|
|
|
|
assert(UserChain.size() > 0 && "you at least found a constant, right?");
|
|
|
|
// Start with the constant and go up through UserChain, each time building a
|
|
|
|
// clone of the subexpression but with the constant removed.
|
|
|
|
// e.g., to build a clone of (a + (b + (c + 5)) but with the 5 removed, we
|
|
|
|
// first c, then (b + c), and finally (a + (b + c)).
|
|
|
|
//
|
|
|
|
// Fast path: if the GEP index is a constant, simply returns 0.
|
|
|
|
if (UserChain.size() == 1)
|
|
|
|
return ConstantInt::get(UserChain[0]->getType(), 0);
|
|
|
|
|
|
|
|
Value *Remainder =
|
|
|
|
rebuildLeafWithoutConstantOffset(UserChain[1], UserChain[0]);
|
|
|
|
for (size_t I = 2; I < UserChain.size(); ++I)
|
|
|
|
Remainder = cloneAndReplace(UserChain[I], UserChain[I - 1], Remainder);
|
|
|
|
return Remainder;
|
|
|
|
}
|
|
|
|
|
|
|
|
int64_t ConstantOffsetExtractor::Extract(Value *Idx, Value *&NewIdx,
|
|
|
|
const DataLayout *DL,
|
|
|
|
Instruction *IP) {
|
|
|
|
ConstantOffsetExtractor Extractor(DL, IP);
|
|
|
|
// Find a non-zero constant offset first.
|
|
|
|
int64_t ConstantOffset = Extractor.find(Idx);
|
|
|
|
if (ConstantOffset == 0)
|
|
|
|
return 0;
|
|
|
|
// Then rebuild a new index with the constant removed.
|
|
|
|
NewIdx = Extractor.rebuildWithoutConstantOffset();
|
|
|
|
return ConstantOffset;
|
|
|
|
}
|
|
|
|
|
|
|
|
int64_t ConstantOffsetExtractor::Find(Value *Idx, const DataLayout *DL) {
|
|
|
|
return ConstantOffsetExtractor(DL, nullptr).find(Idx);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne,
|
|
|
|
APInt &KnownZero) const {
|
|
|
|
IntegerType *IT = cast<IntegerType>(V->getType());
|
|
|
|
KnownOne = APInt(IT->getBitWidth(), 0);
|
|
|
|
KnownZero = APInt(IT->getBitWidth(), 0);
|
2014-05-14 21:14:37 +00:00
|
|
|
llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0);
|
2014-05-01 18:38:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const {
|
|
|
|
assert(LHS->getType() == RHS->getType() &&
|
|
|
|
"LHS and RHS should have the same type");
|
|
|
|
APInt LHSKnownOne, LHSKnownZero, RHSKnownOne, RHSKnownZero;
|
|
|
|
ComputeKnownBits(LHS, LHSKnownOne, LHSKnownZero);
|
|
|
|
ComputeKnownBits(RHS, RHSKnownOne, RHSKnownZero);
|
|
|
|
return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
|
|
|
|
}
|
|
|
|
|
|
|
|
int64_t SeparateConstOffsetFromGEP::accumulateByteOffset(
|
|
|
|
GetElementPtrInst *GEP, const DataLayout *DL, bool &NeedsExtraction) {
|
|
|
|
NeedsExtraction = false;
|
|
|
|
int64_t AccumulativeByteOffset = 0;
|
|
|
|
gep_type_iterator GTI = gep_type_begin(*GEP);
|
|
|
|
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
|
|
|
|
if (isa<SequentialType>(*GTI)) {
|
|
|
|
// Tries to extract a constant offset from this GEP index.
|
|
|
|
int64_t ConstantOffset =
|
|
|
|
ConstantOffsetExtractor::Find(GEP->getOperand(I), DL);
|
|
|
|
if (ConstantOffset != 0) {
|
|
|
|
NeedsExtraction = true;
|
|
|
|
// A GEP may have multiple indices. We accumulate the extracted
|
|
|
|
// constant offset to a byte offset, and later offset the remainder of
|
|
|
|
// the original GEP with this byte offset.
|
|
|
|
AccumulativeByteOffset +=
|
|
|
|
ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return AccumulativeByteOffset;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
|
|
|
|
// Skip vector GEPs.
|
|
|
|
if (GEP->getType()->isVectorTy())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// The backend can already nicely handle the case where all indices are
|
|
|
|
// constant.
|
|
|
|
if (GEP->hasAllConstantIndices())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
bool Changed = false;
|
|
|
|
|
|
|
|
// Shortcuts integer casts. Eliminating these explicit casts can make
|
|
|
|
// subsequent optimizations more obvious: ConstantOffsetExtractor needn't
|
|
|
|
// trace into these casts.
|
|
|
|
if (GEP->isInBounds()) {
|
|
|
|
// Doing this to inbounds GEPs is safe because their indices are guaranteed
|
|
|
|
// to be non-negative and in bounds.
|
|
|
|
gep_type_iterator GTI = gep_type_begin(*GEP);
|
|
|
|
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
|
|
|
|
if (isa<SequentialType>(*GTI)) {
|
|
|
|
if (Operator *O = dyn_cast<Operator>(GEP->getOperand(I))) {
|
|
|
|
if (O->getOpcode() == Instruction::SExt ||
|
|
|
|
O->getOpcode() == Instruction::ZExt) {
|
|
|
|
GEP->setOperand(I, O->getOperand(0));
|
|
|
|
Changed = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const DataLayout *DL = &getAnalysis<DataLayoutPass>().getDataLayout();
|
|
|
|
bool NeedsExtraction;
|
|
|
|
int64_t AccumulativeByteOffset =
|
|
|
|
accumulateByteOffset(GEP, DL, NeedsExtraction);
|
|
|
|
|
|
|
|
if (!NeedsExtraction)
|
|
|
|
return Changed;
|
|
|
|
// Before really splitting the GEP, check whether the backend supports the
|
|
|
|
// addressing mode we are about to produce. If no, this splitting probably
|
|
|
|
// won't be beneficial.
|
|
|
|
TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
|
|
|
|
if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(),
|
|
|
|
/*BaseGV=*/nullptr, AccumulativeByteOffset,
|
|
|
|
/*HasBaseReg=*/true, /*Scale=*/0)) {
|
|
|
|
return Changed;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Remove the constant offset in each GEP index. The resultant GEP computes
|
|
|
|
// the variadic base.
|
|
|
|
gep_type_iterator GTI = gep_type_begin(*GEP);
|
|
|
|
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
|
|
|
|
if (isa<SequentialType>(*GTI)) {
|
|
|
|
Value *NewIdx = nullptr;
|
|
|
|
// Tries to extract a constant offset from this GEP index.
|
|
|
|
int64_t ConstantOffset =
|
|
|
|
ConstantOffsetExtractor::Extract(GEP->getOperand(I), NewIdx, DL, GEP);
|
|
|
|
if (ConstantOffset != 0) {
|
2014-05-23 18:39:40 +00:00
|
|
|
assert(NewIdx != nullptr &&
|
|
|
|
"ConstantOffset != 0 implies NewIdx is set");
|
2014-05-01 18:38:36 +00:00
|
|
|
GEP->setOperand(I, NewIdx);
|
|
|
|
// Clear the inbounds attribute because the new index may be off-bound.
|
|
|
|
// e.g.,
|
|
|
|
//
|
|
|
|
// b = add i64 a, 5
|
|
|
|
// addr = gep inbounds float* p, i64 b
|
|
|
|
//
|
|
|
|
// is transformed to:
|
|
|
|
//
|
|
|
|
// addr2 = gep float* p, i64 a
|
|
|
|
// addr = gep float* addr2, i64 5
|
|
|
|
//
|
|
|
|
// If a is -4, although the old index b is in bounds, the new index a is
|
|
|
|
// off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
|
|
|
|
// inbounds keyword is not present, the offsets are added to the base
|
|
|
|
// address with silently-wrapping two's complement arithmetic".
|
|
|
|
// Therefore, the final code will be a semantically equivalent.
|
|
|
|
//
|
|
|
|
// TODO(jingyue): do some range analysis to keep as many inbounds as
|
|
|
|
// possible. GEPs with inbounds are more friendly to alias analysis.
|
|
|
|
GEP->setIsInBounds(false);
|
|
|
|
Changed = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Offsets the base with the accumulative byte offset.
|
|
|
|
//
|
|
|
|
// %gep ; the base
|
|
|
|
// ... %gep ...
|
|
|
|
//
|
|
|
|
// => add the offset
|
|
|
|
//
|
|
|
|
// %gep2 ; clone of %gep
|
2014-05-23 18:39:40 +00:00
|
|
|
// %new.gep = gep %gep2, <offset / sizeof(*%gep)>
|
2014-05-01 18:38:36 +00:00
|
|
|
// %gep ; will be removed
|
|
|
|
// ... %gep ...
|
|
|
|
//
|
|
|
|
// => replace all uses of %gep with %new.gep and remove %gep
|
|
|
|
//
|
|
|
|
// %gep2 ; clone of %gep
|
2014-05-23 18:39:40 +00:00
|
|
|
// %new.gep = gep %gep2, <offset / sizeof(*%gep)>
|
2014-05-01 18:38:36 +00:00
|
|
|
// ... %new.gep ...
|
|
|
|
//
|
2014-05-23 18:39:40 +00:00
|
|
|
// If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
|
|
|
|
// uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
|
|
|
|
// bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
|
|
|
|
// type of %gep.
|
2014-05-01 18:38:36 +00:00
|
|
|
//
|
2014-05-23 18:39:40 +00:00
|
|
|
// %gep2 ; clone of %gep
|
|
|
|
// %0 = bitcast %gep2 to i8*
|
|
|
|
// %uglygep = gep %0, <offset>
|
|
|
|
// %new.gep = bitcast %uglygep to <type of %gep>
|
|
|
|
// ... %new.gep ...
|
2014-05-01 18:38:36 +00:00
|
|
|
Instruction *NewGEP = GEP->clone();
|
|
|
|
NewGEP->insertBefore(GEP);
|
2014-05-23 18:39:40 +00:00
|
|
|
|
2014-05-01 18:38:36 +00:00
|
|
|
Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
|
2014-05-23 18:39:40 +00:00
|
|
|
uint64_t ElementTypeSizeOfGEP =
|
|
|
|
DL->getTypeAllocSize(GEP->getType()->getElementType());
|
|
|
|
if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
|
|
|
|
// Very likely. As long as %gep is natually aligned, the byte offset we
|
|
|
|
// extracted should be a multiple of sizeof(*%gep).
|
|
|
|
// Per ANSI C standard, signed / unsigned = unsigned. Therefore, we
|
|
|
|
// cast ElementTypeSizeOfGEP to signed.
|
|
|
|
int64_t Index =
|
|
|
|
AccumulativeByteOffset / static_cast<int64_t>(ElementTypeSizeOfGEP);
|
|
|
|
NewGEP = GetElementPtrInst::Create(
|
|
|
|
NewGEP, ConstantInt::get(IntPtrTy, Index, true), GEP->getName(), GEP);
|
|
|
|
} else {
|
|
|
|
// Unlikely but possible. For example,
|
|
|
|
// #pragma pack(1)
|
|
|
|
// struct S {
|
|
|
|
// int a[3];
|
|
|
|
// int64 b[8];
|
|
|
|
// };
|
|
|
|
// #pragma pack()
|
|
|
|
//
|
|
|
|
// Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
|
|
|
|
// extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
|
|
|
|
// sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
|
|
|
|
// sizeof(int64).
|
|
|
|
//
|
|
|
|
// Emit an uglygep in this case.
|
|
|
|
Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
|
|
|
|
GEP->getPointerAddressSpace());
|
|
|
|
NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
|
|
|
|
NewGEP = GetElementPtrInst::Create(
|
|
|
|
NewGEP, ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true),
|
|
|
|
"uglygep", GEP);
|
|
|
|
if (GEP->getType() != I8PtrTy)
|
|
|
|
NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
|
|
|
|
}
|
2014-05-01 18:38:36 +00:00
|
|
|
|
2014-05-23 18:39:40 +00:00
|
|
|
GEP->replaceAllUsesWith(NewGEP);
|
2014-05-01 18:38:36 +00:00
|
|
|
GEP->eraseFromParent();
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
|
|
|
|
if (DisableSeparateConstOffsetFromGEP)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
bool Changed = false;
|
|
|
|
for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) {
|
|
|
|
for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) {
|
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++)) {
|
|
|
|
Changed |= splitGEP(GEP);
|
|
|
|
}
|
|
|
|
// No need to split GEP ConstantExprs because all its indices are constant
|
|
|
|
// already.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return Changed;
|
|
|
|
}
|