llvm-6502/lib/Transforms/IPO/IPConstantPropagation.cpp

238 lines
8.2 KiB
C++
Raw Normal View History

//===-- IPConstantPropagation.cpp - Propagate constants through calls -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements an _extremely_ simple interprocedural constant
// propagation pass. It could certainly be improved in many different ways,
// like using a worklist. This pass makes arguments dead, but does not remove
// them. The existing dead argument elimination pass should be run after this
// to clean up the mess.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ipconstprop"
#include "llvm/Transforms/IPO.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallVector.h"
using namespace llvm;
STATISTIC(NumArgumentsProped, "Number of args turned into constants");
STATISTIC(NumReturnValProped, "Number of return values turned into constants");
namespace {
/// IPCP - The interprocedural constant propagation pass
///
struct VISIBILITY_HIDDEN IPCP : public ModulePass {
static char ID; // Pass identification, replacement for typeid
IPCP() : ModulePass((intptr_t)&ID) {}
bool runOnModule(Module &M);
private:
bool PropagateConstantsIntoArguments(Function &F);
bool PropagateConstantReturn(Function &F);
};
char IPCP::ID = 0;
RegisterPass<IPCP> X("ipconstprop", "Interprocedural constant propagation");
}
ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); }
bool IPCP::runOnModule(Module &M) {
bool Changed = false;
bool LocalChange = true;
// FIXME: instead of using smart algorithms, we just iterate until we stop
// making changes.
while (LocalChange) {
LocalChange = false;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isDeclaration()) {
// Delete any klingons.
I->removeDeadConstantUsers();
if (I->hasInternalLinkage())
LocalChange |= PropagateConstantsIntoArguments(*I);
Changed |= PropagateConstantReturn(*I);
}
Changed |= LocalChange;
}
return Changed;
}
/// PropagateConstantsIntoArguments - Look at all uses of the specified
/// function. If all uses are direct call sites, and all pass a particular
/// constant in for an argument, propagate that constant in as the argument.
///
bool IPCP::PropagateConstantsIntoArguments(Function &F) {
if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit.
// For each argument, keep track of its constant value and whether it is a
// constant or not. The bool is driven to true when found to be non-constant.
SmallVector<std::pair<Constant*, bool>, 16> ArgumentConstants;
ArgumentConstants.resize(F.arg_size());
unsigned NumNonconstant = 0;
for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) {
// Used by a non-instruction, or not the callee of a function, do not
// transform.
if (UI.getOperandNo() != 0 ||
(!isa<CallInst>(*UI) && !isa<InvokeInst>(*UI)))
return false;
CallSite CS = CallSite::get(cast<Instruction>(*UI));
// Check out all of the potentially constant arguments. Note that we don't
// inspect varargs here.
CallSite::arg_iterator AI = CS.arg_begin();
Function::arg_iterator Arg = F.arg_begin();
for (unsigned i = 0, e = ArgumentConstants.size(); i != e;
++i, ++AI, ++Arg) {
// If this argument is known non-constant, ignore it.
if (ArgumentConstants[i].second)
continue;
Constant *C = dyn_cast<Constant>(*AI);
if (C && ArgumentConstants[i].first == 0) {
ArgumentConstants[i].first = C; // First constant seen.
} else if (C && ArgumentConstants[i].first == C) {
// Still the constant value we think it is.
} else if (*AI == &*Arg) {
// Ignore recursive calls passing argument down.
} else {
// Argument became non-constant. If all arguments are non-constant now,
// give up on this function.
if (++NumNonconstant == ArgumentConstants.size())
return false;
ArgumentConstants[i].second = true;
}
}
}
// If we got to this point, there is a constant argument!
assert(NumNonconstant != ArgumentConstants.size());
bool MadeChange = false;
Function::arg_iterator AI = F.arg_begin();
for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) {
// Do we have a constant argument?
if (ArgumentConstants[i].second || AI->use_empty())
continue;
Value *V = ArgumentConstants[i].first;
if (V == 0) V = UndefValue::get(AI->getType());
AI->replaceAllUsesWith(V);
++NumArgumentsProped;
MadeChange = true;
}
return MadeChange;
}
// Check to see if this function returns a constant. If so, replace all callers
// that user the return value with the returned valued. If we can replace ALL
// callers,
bool IPCP::PropagateConstantReturn(Function &F) {
if (F.getReturnType() == Type::VoidTy)
return false; // No return value.
// Check to see if this function returns a constant.
SmallVector<Value *,4> RetVals;
const StructType *STy = dyn_cast<StructType>(F.getReturnType());
if (STy)
RetVals.assign(STy->getNumElements(), 0);
else
RetVals.push_back(0);
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
assert(RetVals.size() == RI->getNumOperands() &&
"Invalid ReturnInst operands!");
for (unsigned i = 0, e = RetVals.size(); i != e; ++i) {
if (isa<UndefValue>(RI->getOperand(i)))
continue; // Ignore
Constant *C = dyn_cast<Constant>(RI->getOperand(i));
if (C == 0)
return false; // Does not return a constant.
Value *RV = RetVals[i];
if (RV == 0)
RetVals[i] = C;
else if (RV != C)
return false; // Does not return the same constant.
}
}
if (STy) {
for (unsigned i = 0, e = RetVals.size(); i < e; ++i)
if (RetVals[i] == 0)
RetVals[i] = UndefValue::get(STy->getElementType(i));
} else {
assert(RetVals.size() == 1);
if (RetVals[0] == 0)
RetVals[0] = UndefValue::get(F.getReturnType());
}
// If we got here, the function returns a constant value. Loop over all
// users, replacing any uses of the return value with the returned constant.
bool ReplacedAllUsers = true;
bool MadeChange = false;
for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) {
// Make sure this is an invoke or call and that the use is for the callee.
if (!(isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) ||
UI.getOperandNo() != 0) {
ReplacedAllUsers = false;
continue;
}
Instruction *Call = cast<Instruction>(*UI);
if (Call->use_empty())
continue;
MadeChange = true;
if (STy == 0) {
Call->replaceAllUsesWith(RetVals[0]);
continue;
}
while (!Call->use_empty()) {
GetResultInst *GR = cast<GetResultInst>(Call->use_back());
GR->replaceAllUsesWith(RetVals[GR->getIndex()]);
GR->eraseFromParent();
}
}
// If we replace all users with the returned constant, and there can be no
// other callers of the function, replace the constant being returned in the
// function with an undef value.
if (ReplacedAllUsers && F.hasInternalLinkage()) {
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
for (unsigned i = 0, e = RetVals.size(); i < e; ++i) {
Value *RetVal = RetVals[i];
if (isa<UndefValue>(RetVal))
continue;
Value *RV = UndefValue::get(RetVal->getType());
if (RI->getOperand(i) != RV) {
RI->setOperand(i, RV);
MadeChange = true;
}
}
}
}
}
if (MadeChange) ++NumReturnValProped;
return MadeChange;
}