llvm-6502/lib/Bytecode/Reader/ReaderInternals.h

296 lines
11 KiB
C
Raw Normal View History

//===-- ReaderInternals.h - Definitions internal to the reader --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header file defines various stuff that is used by the bytecode reader.
//
//===----------------------------------------------------------------------===//
#ifndef READER_INTERNALS_H
#define READER_INTERNALS_H
#include "ReaderPrimitives.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/ModuleProvider.h"
#include <utility>
#include <map>
namespace llvm {
// Enable to trace to figure out what the heck is going on when parsing fails
//#define TRACE_LEVEL 10
//#define DEBUG_OUTPUT
#if TRACE_LEVEL // ByteCodeReading_TRACEr
#define BCR_TRACE(n, X) \
if (n < TRACE_LEVEL) std::cerr << std::string(n*2, ' ') << X
#else
#define BCR_TRACE(n, X)
#endif
struct LazyFunctionInfo {
const unsigned char *Buf, *EndBuf;
LazyFunctionInfo(const unsigned char *B = 0, const unsigned char *EB = 0)
: Buf(B), EndBuf(EB) {}
};
class BytecodeParser : public ModuleProvider {
BytecodeParser(const BytecodeParser &); // DO NOT IMPLEMENT
void operator=(const BytecodeParser &); // DO NOT IMPLEMENT
public:
BytecodeParser() {}
~BytecodeParser() {
freeState();
}
void freeState() {
freeTable(Values);
freeTable(ModuleValues);
}
Module* materializeModule() {
while (! LazyFunctionLoadMap.empty()) {
std::map<Function*, LazyFunctionInfo>::iterator i =
LazyFunctionLoadMap.begin();
materializeFunction((*i).first);
}
return TheModule;
}
Module* releaseModule() {
// Since we're losing control of this Module, we must hand it back complete
Module *M = ModuleProvider::releaseModule();
freeState();
return M;
}
void ParseBytecode(const unsigned char *Buf, unsigned Length,
const std::string &ModuleID);
void dump() const {
std::cerr << "BytecodeParser instance!\n";
}
private:
struct ValueList : public User {
ValueList() : User(Type::TypeTy, Value::TypeVal) {}
// vector compatibility methods
unsigned size() const { return getNumOperands(); }
void push_back(Value *V) { Operands.push_back(Use(V, this)); }
Value *back() const { return Operands.back(); }
void pop_back() { Operands.pop_back(); }
bool empty() const { return Operands.empty(); }
virtual void print(std::ostream& OS) const {
OS << "Bytecode Reader UseHandle!";
}
};
// Information about the module, extracted from the bytecode revision number.
unsigned char RevisionNum; // The rev # itself
bool hasExtendedLinkageSpecs; // Supports more than 4 linkage types
bool hasOldStyleVarargs; // Has old version of varargs intrinsics?
bool hasVarArgCallPadding; // Bytecode has extra padding in vararg call
bool usesOldStyleVarargs; // Does this module USE old style varargs?
// Flags to distinguish LLVM 1.0 & 1.1 bytecode formats (revision #0)
// Revision #0 had an explicit alignment of data only for the ModuleGlobalInfo
// block. This was fixed to be like all other blocks in 1.2
bool hasInconsistentModuleGlobalInfo;
// Revision #0 also explicitly encoded zero values for primitive types like
// int/sbyte/etc.
bool hasExplicitPrimitiveZeros;
typedef std::vector<ValueList*> ValueTable;
ValueTable Values;
ValueTable ModuleValues;
std::map<std::pair<unsigned,unsigned>, Value*> ForwardReferences;
/// CompactionTable - If a compaction table is active in the current function,
/// this is the mapping that it contains.
std::vector<std::vector<Value*> > CompactionTable;
std::vector<BasicBlock*> ParsedBasicBlocks;
// ConstantFwdRefs - This maintains a mapping between <Type, Slot #>'s and
// forward references to constants. Such values may be referenced before they
// are defined, and if so, the temporary object that they represent is held
// here.
//
typedef std::map<std::pair<const Type*,unsigned>, Constant*> ConstantRefsType;
ConstantRefsType ConstantFwdRefs;
// TypesLoaded - This vector mirrors the Values[TypeTyID] plane. It is used
// to deal with forward references to types.
//
typedef std::vector<PATypeHolder> TypeValuesListTy;
TypeValuesListTy ModuleTypeValues;
TypeValuesListTy FunctionTypeValues;
// When the ModuleGlobalInfo section is read, we create a function object for
// each function in the module. When the function is loaded, this function is
// filled in.
//
std::vector<Function*> FunctionSignatureList;
// Constant values are read in after global variables. Because of this, we
// must defer setting the initializers on global variables until after module
// level constants have been read. In the mean time, this list keeps track of
// what we must do.
//
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
// For lazy reading-in of functions, we need to save away several pieces of
// information about each function: its begin and end pointer in the buffer
// and its FunctionSlot.
//
std::map<Function*, LazyFunctionInfo> LazyFunctionLoadMap;
private:
void freeTable(ValueTable &Tab) {
while (!Tab.empty()) {
delete Tab.back();
Tab.pop_back();
}
}
/// getGlobalTableType - This is just like getType, but when a compaction
/// table is in use, it is ignored. Also, no forward references or other
/// fancy features are supported.
const Type *getGlobalTableType(unsigned Slot) {
if (Slot < Type::FirstDerivedTyID) {
const Type *Ty = Type::getPrimitiveType((Type::PrimitiveID)Slot);
assert(Ty && "Not a primitive type ID?");
return Ty;
}
Slot -= Type::FirstDerivedTyID;
if (Slot >= ModuleTypeValues.size())
throw std::string("Illegal compaction table type reference!");
return ModuleTypeValues[Slot];
}
unsigned getGlobalTableTypeSlot(const Type *Ty) {
if (Ty->isPrimitiveType())
return Ty->getPrimitiveID();
TypeValuesListTy::iterator I = find(ModuleTypeValues.begin(),
ModuleTypeValues.end(), Ty);
if (I == ModuleTypeValues.end())
throw std::string("Didn't find type in ModuleTypeValues.");
return Type::FirstDerivedTyID + (&*I - &ModuleTypeValues[0]);
}
/// getGlobalTableValue - This is just like getValue, but when a compaction
/// table is in use, it is ignored. Also, no forward references or other
/// fancy features are supported.
Value *getGlobalTableValue(const Type *Ty, unsigned SlotNo) {
// FIXME: getTypeSlot is inefficient!
unsigned TyID = getGlobalTableTypeSlot(Ty);
if (TyID != Type::LabelTyID) {
if (SlotNo == 0)
return Constant::getNullValue(Ty);
--SlotNo;
}
if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0 ||
SlotNo >= ModuleValues[TyID]->getNumOperands()) {
std::cerr << TyID << ", " << SlotNo << ": " << ModuleValues.size() << ", "
<< (void*)ModuleValues[TyID] << ", "
<< ModuleValues[TyID]->getNumOperands() << "\n";
throw std::string("Corrupt compaction table entry!");
}
return ModuleValues[TyID]->getOperand(SlotNo);
}
public:
void ParseModule(const unsigned char * Buf, const unsigned char *End);
void materializeFunction(Function *F);
private:
void ParseVersionInfo (const unsigned char *&Buf, const unsigned char *End);
void ParseModuleGlobalInfo(const unsigned char *&Buf, const unsigned char *E);
void ParseSymbolTable(const unsigned char *&Buf, const unsigned char *End,
SymbolTable *, Function *CurrentFunction);
void ParseFunction(const unsigned char *&Buf, const unsigned char *End);
void ParseCompactionTable(const unsigned char *&Buf,const unsigned char *End);
void ParseGlobalTypes(const unsigned char *&Buf, const unsigned char *EndBuf);
BasicBlock *ParseBasicBlock(const unsigned char *&Buf,
const unsigned char *End,
unsigned BlockNo);
unsigned ParseInstructionList(Function *F, const unsigned char *&Buf,
const unsigned char *EndBuf);
void ParseInstruction(const unsigned char *&Buf, const unsigned char *End,
std::vector<unsigned> &Args, BasicBlock *BB);
void ParseConstantPool(const unsigned char *&Buf, const unsigned char *EndBuf,
ValueTable &Tab, TypeValuesListTy &TypeTab);
Constant *parseConstantValue(const unsigned char *&Buf,
const unsigned char *End,
unsigned TypeID);
void parseTypeConstants(const unsigned char *&Buf,
const unsigned char *EndBuf,
TypeValuesListTy &Tab, unsigned NumEntries);
const Type *parseTypeConstant(const unsigned char *&Buf,
const unsigned char *EndBuf);
void parseStringConstants(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned NumEntries, ValueTable &Tab);
Value *getValue(unsigned TypeID, unsigned num, bool Create = true);
const Type *getType(unsigned ID);
BasicBlock *getBasicBlock(unsigned ID);
Constant *getConstantValue(unsigned TypeID, unsigned num);
Constant *getConstantValue(const Type *Ty, unsigned num) {
return getConstantValue(getTypeSlot(Ty), num);
}
unsigned insertValue(Value *V, unsigned Type, ValueTable &Table);
unsigned getTypeSlot(const Type *Ty);
// resolve all references to the placeholder (if any) for the given constant
void ResolveReferencesToConstant(Constant *C, unsigned Slot);
};
template<class SuperType>
class PlaceholderDef : public SuperType {
unsigned ID;
PlaceholderDef(); // DO NOT IMPLEMENT
void operator=(const PlaceholderDef &); // DO NOT IMPLEMENT
public:
PlaceholderDef(const Type *Ty, unsigned id) : SuperType(Ty), ID(id) {}
unsigned getID() { return ID; }
};
struct ConstantPlaceHolderHelper : public ConstantExpr {
ConstantPlaceHolderHelper(const Type *Ty)
: ConstantExpr(Instruction::UserOp1, Constant::getNullValue(Ty), Ty) {}
};
typedef PlaceholderDef<ConstantPlaceHolderHelper> ConstPHolder;
static inline void readBlock(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned &Type, unsigned &Size) {
Type = read(Buf, EndBuf);
Size = read(Buf, EndBuf);
}
} // End llvm namespace
#endif