llvm-6502/lib/Target/ARM/AsmParser/ARMAsmParser.cpp

823 lines
25 KiB
C++
Raw Normal View History

//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Target/TargetAsmParser.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
using namespace llvm;
namespace {
struct ARMOperand;
// The shift types for register controlled shifts in arm memory addressing
enum ShiftType {
Lsl,
Lsr,
Asr,
Ror,
Rrx
};
class ARMAsmParser : public TargetAsmParser {
MCAsmParser &Parser;
private:
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
bool MaybeParseRegister(OwningPtr<ARMOperand> &Op, bool ParseWriteBack);
bool ParseRegisterList(OwningPtr<ARMOperand> &Op);
bool ParseMemory(OwningPtr<ARMOperand> &Op);
bool ParseMemoryOffsetReg(bool &Negative,
bool &OffsetRegShifted,
enum ShiftType &ShiftType,
const MCExpr *&ShiftAmount,
const MCExpr *&Offset,
bool &OffsetIsReg,
int &OffsetRegNum,
SMLoc &E);
bool ParseShift(enum ShiftType &St, const MCExpr *&ShiftAmount, SMLoc &E);
bool ParseOperand(OwningPtr<ARMOperand> &Op);
bool ParseDirectiveWord(unsigned Size, SMLoc L);
bool ParseDirectiveThumb(SMLoc L);
bool ParseDirectiveThumbFunc(SMLoc L);
bool ParseDirectiveCode(SMLoc L);
bool ParseDirectiveSyntax(SMLoc L);
// TODO - For now hacked versions of the next two are in here in this file to
// allow some parser testing until the table gen versions are implemented.
/// @name Auto-generated Match Functions
/// {
bool MatchInstruction(const SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCInst &Inst);
/// MatchRegisterName - Match the given string to a register name and return
/// its register number, or -1 if there is no match. To allow return values
/// to be used directly in register lists, arm registers have values between
/// 0 and 15.
int MatchRegisterName(const StringRef &Name);
/// }
public:
ARMAsmParser(const Target &T, MCAsmParser &_Parser)
: TargetAsmParser(T), Parser(_Parser) {}
virtual bool ParseInstruction(const StringRef &Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
virtual bool ParseDirective(AsmToken DirectiveID);
};
/// ARMOperand - Instances of this class represent a parsed ARM machine
/// instruction.
struct ARMOperand : public MCParsedAsmOperand {
private:
ARMOperand() {}
public:
enum KindTy {
Token,
Register,
Immediate,
Memory
} Kind;
SMLoc StartLoc, EndLoc;
union {
struct {
const char *Data;
unsigned Length;
} Tok;
struct {
unsigned RegNum;
bool Writeback;
} Reg;
struct {
const MCExpr *Val;
} Imm;
// This is for all forms of ARM address expressions
struct {
unsigned BaseRegNum;
unsigned OffsetRegNum; // used when OffsetIsReg is true
const MCExpr *Offset; // used when OffsetIsReg is false
const MCExpr *ShiftAmount; // used when OffsetRegShifted is true
enum ShiftType ShiftType; // used when OffsetRegShifted is true
unsigned
OffsetRegShifted : 1, // only used when OffsetIsReg is true
Preindexed : 1,
Postindexed : 1,
OffsetIsReg : 1,
Negative : 1, // only used when OffsetIsReg is true
Writeback : 1;
} Mem;
};
ARMOperand(KindTy K, SMLoc S, SMLoc E)
: Kind(K), StartLoc(S), EndLoc(E) {}
ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
Kind = o.Kind;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case Token:
Tok = o.Tok;
break;
case Register:
Reg = o.Reg;
break;
case Immediate:
Imm = o.Imm;
break;
case Memory:
Mem = o.Mem;
break;
}
}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const { return EndLoc; }
StringRef getToken() const {
assert(Kind == Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
unsigned getReg() const {
assert(Kind == Register && "Invalid access!");
return Reg.RegNum;
}
const MCExpr *getImm() const {
assert(Kind == Immediate && "Invalid access!");
return Imm.Val;
}
bool isToken() const {return Kind == Token; }
bool isReg() const { return Kind == Register; }
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
static void CreateToken(OwningPtr<ARMOperand> &Op, StringRef Str,
SMLoc S) {
Op.reset(new ARMOperand);
Op->Kind = Token;
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
}
static void CreateReg(OwningPtr<ARMOperand> &Op, unsigned RegNum,
bool Writeback, SMLoc S, SMLoc E) {
Op.reset(new ARMOperand);
Op->Kind = Register;
Op->Reg.RegNum = RegNum;
Op->Reg.Writeback = Writeback;
Op->StartLoc = S;
Op->EndLoc = E;
}
static void CreateImm(OwningPtr<ARMOperand> &Op, const MCExpr *Val,
SMLoc S, SMLoc E) {
Op.reset(new ARMOperand);
Op->Kind = Immediate;
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
}
static void CreateMem(OwningPtr<ARMOperand> &Op,
unsigned BaseRegNum, bool OffsetIsReg,
const MCExpr *Offset, unsigned OffsetRegNum,
bool OffsetRegShifted, enum ShiftType ShiftType,
const MCExpr *ShiftAmount, bool Preindexed,
bool Postindexed, bool Negative, bool Writeback,
SMLoc S, SMLoc E) {
Op.reset(new ARMOperand);
Op->Kind = Memory;
Op->Mem.BaseRegNum = BaseRegNum;
Op->Mem.OffsetIsReg = OffsetIsReg;
Op->Mem.Offset = Offset;
Op->Mem.OffsetRegNum = OffsetRegNum;
Op->Mem.OffsetRegShifted = OffsetRegShifted;
Op->Mem.ShiftType = ShiftType;
Op->Mem.ShiftAmount = ShiftAmount;
Op->Mem.Preindexed = Preindexed;
Op->Mem.Postindexed = Postindexed;
Op->Mem.Negative = Negative;
Op->Mem.Writeback = Writeback;
Op->StartLoc = S;
Op->EndLoc = E;
}
};
} // end anonymous namespace.
/// Try to parse a register name. The token must be an Identifier when called,
/// and if it is a register name a Reg operand is created, the token is eaten
/// and false is returned. Else true is returned and no token is eaten.
/// TODO this is likely to change to allow different register types and or to
/// parse for a specific register type.
bool ARMAsmParser::MaybeParseRegister
(OwningPtr<ARMOperand> &Op, bool ParseWriteBack) {
SMLoc S, E;
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
// FIXME: Validate register for the current architecture; we have to do
// validation later, so maybe there is no need for this here.
int RegNum;
RegNum = MatchRegisterName(Tok.getString());
if (RegNum == -1)
return true;
S = Tok.getLoc();
Parser.Lex(); // Eat identifier token.
E = Parser.getTok().getLoc();
bool Writeback = false;
if (ParseWriteBack) {
const AsmToken &ExclaimTok = Parser.getTok();
if (ExclaimTok.is(AsmToken::Exclaim)) {
E = ExclaimTok.getLoc();
Writeback = true;
Parser.Lex(); // Eat exclaim token
}
}
ARMOperand::CreateReg(Op, RegNum, Writeback, S, E);
return false;
}
/// Parse a register list, return false if successful else return true or an
/// error. The first token must be a '{' when called.
bool ARMAsmParser::ParseRegisterList(OwningPtr<ARMOperand> &Op) {
SMLoc S, E;
assert(Parser.getTok().is(AsmToken::LCurly) &&
"Token is not an Left Curly Brace");
S = Parser.getTok().getLoc();
Parser.Lex(); // Eat left curly brace token.
const AsmToken &RegTok = Parser.getTok();
SMLoc RegLoc = RegTok.getLoc();
if (RegTok.isNot(AsmToken::Identifier))
return Error(RegLoc, "register expected");
int RegNum = MatchRegisterName(RegTok.getString());
if (RegNum == -1)
return Error(RegLoc, "register expected");
Parser.Lex(); // Eat identifier token.
unsigned RegList = 1 << RegNum;
int HighRegNum = RegNum;
// TODO ranges like "{Rn-Rm}"
while (Parser.getTok().is(AsmToken::Comma)) {
Parser.Lex(); // Eat comma token.
const AsmToken &RegTok = Parser.getTok();
SMLoc RegLoc = RegTok.getLoc();
if (RegTok.isNot(AsmToken::Identifier))
return Error(RegLoc, "register expected");
int RegNum = MatchRegisterName(RegTok.getString());
if (RegNum == -1)
return Error(RegLoc, "register expected");
if (RegList & (1 << RegNum))
Warning(RegLoc, "register duplicated in register list");
else if (RegNum <= HighRegNum)
Warning(RegLoc, "register not in ascending order in register list");
RegList |= 1 << RegNum;
HighRegNum = RegNum;
Parser.Lex(); // Eat identifier token.
}
const AsmToken &RCurlyTok = Parser.getTok();
if (RCurlyTok.isNot(AsmToken::RCurly))
return Error(RCurlyTok.getLoc(), "'}' expected");
E = RCurlyTok.getLoc();
Parser.Lex(); // Eat left curly brace token.
return false;
}
/// Parse an arm memory expression, return false if successful else return true
/// or an error. The first token must be a '[' when called.
/// TODO Only preindexing and postindexing addressing are started, unindexed
/// with option, etc are still to do.
bool ARMAsmParser::ParseMemory(OwningPtr<ARMOperand> &Op) {
SMLoc S, E;
assert(Parser.getTok().is(AsmToken::LBrac) &&
"Token is not an Left Bracket");
S = Parser.getTok().getLoc();
Parser.Lex(); // Eat left bracket token.
const AsmToken &BaseRegTok = Parser.getTok();
if (BaseRegTok.isNot(AsmToken::Identifier))
return Error(BaseRegTok.getLoc(), "register expected");
if (MaybeParseRegister(Op, false))
return Error(BaseRegTok.getLoc(), "register expected");
int BaseRegNum = Op->getReg();
bool Preindexed = false;
bool Postindexed = false;
bool OffsetIsReg = false;
bool Negative = false;
bool Writeback = false;
// First look for preindexed address forms, that is after the "[Rn" we now
// have to see if the next token is a comma.
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Comma)) {
Preindexed = true;
Parser.Lex(); // Eat comma token.
int OffsetRegNum;
bool OffsetRegShifted;
enum ShiftType ShiftType;
const MCExpr *ShiftAmount;
const MCExpr *Offset;
if(ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType, ShiftAmount,
Offset, OffsetIsReg, OffsetRegNum, E))
return true;
const AsmToken &RBracTok = Parser.getTok();
if (RBracTok.isNot(AsmToken::RBrac))
return Error(RBracTok.getLoc(), "']' expected");
E = RBracTok.getLoc();
Parser.Lex(); // Eat right bracket token.
const AsmToken &ExclaimTok = Parser.getTok();
if (ExclaimTok.is(AsmToken::Exclaim)) {
E = ExclaimTok.getLoc();
Writeback = true;
Parser.Lex(); // Eat exclaim token
}
ARMOperand::CreateMem(Op, BaseRegNum, OffsetIsReg, Offset, OffsetRegNum,
OffsetRegShifted, ShiftType, ShiftAmount,
Preindexed, Postindexed, Negative, Writeback, S, E);
return false;
}
// The "[Rn" we have so far was not followed by a comma.
else if (Tok.is(AsmToken::RBrac)) {
// This is a post indexing addressing forms, that is a ']' follows after
// the "[Rn".
Postindexed = true;
Writeback = true;
E = Tok.getLoc();
Parser.Lex(); // Eat right bracket token.
int OffsetRegNum = 0;
bool OffsetRegShifted = false;
enum ShiftType ShiftType;
const MCExpr *ShiftAmount;
const MCExpr *Offset;
const AsmToken &NextTok = Parser.getTok();
if (NextTok.isNot(AsmToken::EndOfStatement)) {
if (NextTok.isNot(AsmToken::Comma))
return Error(NextTok.getLoc(), "',' expected");
Parser.Lex(); // Eat comma token.
if(ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType,
ShiftAmount, Offset, OffsetIsReg, OffsetRegNum,
E))
return true;
}
ARMOperand::CreateMem(Op, BaseRegNum, OffsetIsReg, Offset, OffsetRegNum,
OffsetRegShifted, ShiftType, ShiftAmount,
Preindexed, Postindexed, Negative, Writeback, S, E);
return false;
}
return true;
}
/// Parse the offset of a memory operand after we have seen "[Rn," or "[Rn],"
/// we will parse the following (were +/- means that a plus or minus is
/// optional):
/// +/-Rm
/// +/-Rm, shift
/// #offset
/// we return false on success or an error otherwise.
bool ARMAsmParser::ParseMemoryOffsetReg(bool &Negative,
bool &OffsetRegShifted,
enum ShiftType &ShiftType,
const MCExpr *&ShiftAmount,
const MCExpr *&Offset,
bool &OffsetIsReg,
int &OffsetRegNum,
SMLoc &E) {
OwningPtr<ARMOperand> Op;
Negative = false;
OffsetRegShifted = false;
OffsetIsReg = false;
OffsetRegNum = -1;
const AsmToken &NextTok = Parser.getTok();
E = NextTok.getLoc();
if (NextTok.is(AsmToken::Plus))
Parser.Lex(); // Eat plus token.
else if (NextTok.is(AsmToken::Minus)) {
Negative = true;
Parser.Lex(); // Eat minus token
}
// See if there is a register following the "[Rn," or "[Rn]," we have so far.
const AsmToken &OffsetRegTok = Parser.getTok();
if (OffsetRegTok.is(AsmToken::Identifier)) {
OffsetIsReg = !MaybeParseRegister(Op, false);
if (OffsetIsReg) {
E = Op->getEndLoc();
OffsetRegNum = Op->getReg();
}
}
// If we parsed a register as the offset then their can be a shift after that
if (OffsetRegNum != -1) {
// Look for a comma then a shift
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Comma)) {
Parser.Lex(); // Eat comma token.
const AsmToken &Tok = Parser.getTok();
if (ParseShift(ShiftType, ShiftAmount, E))
return Error(Tok.getLoc(), "shift expected");
OffsetRegShifted = true;
}
}
else { // the "[Rn," or "[Rn,]" we have so far was not followed by "Rm"
// Look for #offset following the "[Rn," or "[Rn],"
const AsmToken &HashTok = Parser.getTok();
if (HashTok.isNot(AsmToken::Hash))
return Error(HashTok.getLoc(), "'#' expected");
Parser.Lex(); // Eat hash token.
if (getParser().ParseExpression(Offset))
return true;
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
}
return false;
}
/// ParseShift as one of these two:
/// ( lsl | lsr | asr | ror ) , # shift_amount
/// rrx
/// and returns true if it parses a shift otherwise it returns false.
bool ARMAsmParser::ParseShift(ShiftType &St,
const MCExpr *&ShiftAmount,
SMLoc &E) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return true;
const StringRef &ShiftName = Tok.getString();
if (ShiftName == "lsl" || ShiftName == "LSL")
St = Lsl;
else if (ShiftName == "lsr" || ShiftName == "LSR")
St = Lsr;
else if (ShiftName == "asr" || ShiftName == "ASR")
St = Asr;
else if (ShiftName == "ror" || ShiftName == "ROR")
St = Ror;
else if (ShiftName == "rrx" || ShiftName == "RRX")
St = Rrx;
else
return true;
Parser.Lex(); // Eat shift type token.
// Rrx stands alone.
if (St == Rrx)
return false;
// Otherwise, there must be a '#' and a shift amount.
const AsmToken &HashTok = Parser.getTok();
if (HashTok.isNot(AsmToken::Hash))
return Error(HashTok.getLoc(), "'#' expected");
Parser.Lex(); // Eat hash token.
if (getParser().ParseExpression(ShiftAmount))
return true;
return false;
}
/// A hack to allow some testing, to be replaced by a real table gen version.
int ARMAsmParser::MatchRegisterName(const StringRef &Name) {
if (Name == "r0" || Name == "R0")
return 0;
else if (Name == "r1" || Name == "R1")
return 1;
else if (Name == "r2" || Name == "R2")
return 2;
else if (Name == "r3" || Name == "R3")
return 3;
else if (Name == "r3" || Name == "R3")
return 3;
else if (Name == "r4" || Name == "R4")
return 4;
else if (Name == "r5" || Name == "R5")
return 5;
else if (Name == "r6" || Name == "R6")
return 6;
else if (Name == "r7" || Name == "R7")
return 7;
else if (Name == "r8" || Name == "R8")
return 8;
else if (Name == "r9" || Name == "R9")
return 9;
else if (Name == "r10" || Name == "R10")
return 10;
else if (Name == "r11" || Name == "R11" || Name == "fp")
return 11;
else if (Name == "r12" || Name == "R12" || Name == "ip")
return 12;
else if (Name == "r13" || Name == "R13" || Name == "sp")
return 13;
else if (Name == "r14" || Name == "R14" || Name == "lr")
return 14;
else if (Name == "r15" || Name == "R15" || Name == "pc")
return 15;
return -1;
}
/// A hack to allow some testing, to be replaced by a real table gen version.
bool ARMAsmParser::
MatchInstruction(const SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCInst &Inst) {
ARMOperand &Op0 = *(ARMOperand*)Operands[0];
assert(Op0.Kind == ARMOperand::Token && "First operand not a Token");
const StringRef &Mnemonic = Op0.getToken();
if (Mnemonic == "add" ||
Mnemonic == "stmfd" ||
Mnemonic == "str" ||
Mnemonic == "ldmfd" ||
Mnemonic == "ldr" ||
Mnemonic == "mov" ||
Mnemonic == "sub" ||
Mnemonic == "bl" ||
Mnemonic == "push" ||
Mnemonic == "blx" ||
Mnemonic == "pop") {
// Hard-coded to a valid instruction, till we have a real matcher.
Inst = MCInst();
Inst.setOpcode(ARM::MOVr);
Inst.addOperand(MCOperand::CreateReg(2));
Inst.addOperand(MCOperand::CreateReg(2));
Inst.addOperand(MCOperand::CreateImm(0));
Inst.addOperand(MCOperand::CreateImm(0));
Inst.addOperand(MCOperand::CreateReg(0));
return false;
}
return true;
}
/// Parse a arm instruction operand. For now this parses the operand regardless
/// of the mnemonic.
bool ARMAsmParser::ParseOperand(OwningPtr<ARMOperand> &Op) {
SMLoc S, E;
switch (getLexer().getKind()) {
case AsmToken::Identifier:
if (!MaybeParseRegister(Op, true))
return false;
// This was not a register so parse other operands that start with an
// identifier (like labels) as expressions and create them as immediates.
const MCExpr *IdVal;
S = Parser.getTok().getLoc();
if (getParser().ParseExpression(IdVal))
return true;
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
ARMOperand::CreateImm(Op, IdVal, S, E);
return false;
case AsmToken::LBrac:
return ParseMemory(Op);
case AsmToken::LCurly:
return ParseRegisterList(Op);
case AsmToken::Hash:
// #42 -> immediate.
// TODO: ":lower16:" and ":upper16:" modifiers after # before immediate
S = Parser.getTok().getLoc();
Parser.Lex();
const MCExpr *ImmVal;
if (getParser().ParseExpression(ImmVal))
return true;
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
ARMOperand::CreateImm(Op, ImmVal, S, E);
return false;
default:
return Error(Parser.getTok().getLoc(), "unexpected token in operand");
}
}
/// Parse an arm instruction mnemonic followed by its operands.
bool ARMAsmParser::ParseInstruction(const StringRef &Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
OwningPtr<ARMOperand> Op;
ARMOperand::CreateToken(Op, Name, NameLoc);
Operands.push_back(Op.take());
SMLoc Loc = Parser.getTok().getLoc();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
OwningPtr<ARMOperand> Op;
if (ParseOperand(Op)) return true;
Operands.push_back(Op.take());
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (ParseOperand(Op)) return true;
Operands.push_back(Op.take());
}
}
return false;
}
/// ParseDirective parses the arm specific directives
bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".word")
return ParseDirectiveWord(4, DirectiveID.getLoc());
else if (IDVal == ".thumb")
return ParseDirectiveThumb(DirectiveID.getLoc());
else if (IDVal == ".thumb_func")
return ParseDirectiveThumbFunc(DirectiveID.getLoc());
else if (IDVal == ".code")
return ParseDirectiveCode(DirectiveID.getLoc());
else if (IDVal == ".syntax")
return ParseDirectiveSyntax(DirectiveID.getLoc());
return true;
}
/// ParseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool ARMAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().ParseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
/// ParseDirectiveThumb
/// ::= .thumb
bool ARMAsmParser::ParseDirectiveThumb(SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(L, "unexpected token in directive");
Parser.Lex();
// TODO: set thumb mode
// TODO: tell the MC streamer the mode
// getParser().getStreamer().Emit???();
return false;
}
/// ParseDirectiveThumbFunc
/// ::= .thumbfunc symbol_name
bool ARMAsmParser::ParseDirectiveThumbFunc(SMLoc L) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
return Error(L, "unexpected token in .syntax directive");
StringRef ATTRIBUTE_UNUSED SymbolName = Parser.getTok().getIdentifier();
Parser.Lex(); // Consume the identifier token.
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(L, "unexpected token in directive");
Parser.Lex();
// TODO: mark symbol as a thumb symbol
// getParser().getStreamer().Emit???();
return false;
}
/// ParseDirectiveSyntax
/// ::= .syntax unified | divided
bool ARMAsmParser::ParseDirectiveSyntax(SMLoc L) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return Error(L, "unexpected token in .syntax directive");
const StringRef &Mode = Tok.getString();
bool unified_syntax;
if (Mode == "unified" || Mode == "UNIFIED") {
Parser.Lex();
unified_syntax = true;
}
else if (Mode == "divided" || Mode == "DIVIDED") {
Parser.Lex();
unified_syntax = false;
}
else
return Error(L, "unrecognized syntax mode in .syntax directive");
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(), "unexpected token in directive");
Parser.Lex();
// TODO tell the MC streamer the mode
// getParser().getStreamer().Emit???();
return false;
}
/// ParseDirectiveCode
/// ::= .code 16 | 32
bool ARMAsmParser::ParseDirectiveCode(SMLoc L) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Integer))
return Error(L, "unexpected token in .code directive");
int64_t Val = Parser.getTok().getIntVal();
bool thumb_mode;
if (Val == 16) {
Parser.Lex();
thumb_mode = true;
}
else if (Val == 32) {
Parser.Lex();
thumb_mode = false;
}
else
return Error(L, "invalid operand to .code directive");
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(), "unexpected token in directive");
Parser.Lex();
// TODO tell the MC streamer the mode
// getParser().getStreamer().Emit???();
return false;
}
extern "C" void LLVMInitializeARMAsmLexer();
/// Force static initialization.
extern "C" void LLVMInitializeARMAsmParser() {
RegisterAsmParser<ARMAsmParser> X(TheARMTarget);
RegisterAsmParser<ARMAsmParser> Y(TheThumbTarget);
LLVMInitializeARMAsmLexer();
}