2015-01-26 18:54:27 +00:00
|
|
|
; Tests that check our handling of volatile instructions encountered
|
|
|
|
; when scanning for dependencies
|
|
|
|
; RUN: opt -basicaa -gvn -S < %s | FileCheck %s
|
|
|
|
|
|
|
|
; Check that we can bypass a volatile load when searching
|
|
|
|
; for dependencies of a non-volatile load
|
|
|
|
define i32 @test1(i32* nocapture %p, i32* nocapture %q) {
|
|
|
|
; CHECK-LABEL: test1
|
|
|
|
; CHECK: %0 = load volatile i32* %q
|
|
|
|
; CHECK-NEXT: ret i32 0
|
|
|
|
entry:
|
|
|
|
%x = load i32* %p
|
|
|
|
load volatile i32* %q
|
|
|
|
%y = load i32* %p
|
|
|
|
%add = sub i32 %y, %x
|
|
|
|
ret i32 %add
|
|
|
|
}
|
|
|
|
|
|
|
|
; We can not value forward if the query instruction is
|
|
|
|
; volatile, this would be (in effect) removing the volatile load
|
|
|
|
define i32 @test2(i32* nocapture %p, i32* nocapture %q) {
|
|
|
|
; CHECK-LABEL: test2
|
|
|
|
; CHECK: %x = load i32* %p
|
|
|
|
; CHECK-NEXT: %y = load volatile i32* %p
|
|
|
|
; CHECK-NEXT: %add = sub i32 %y, %x
|
|
|
|
entry:
|
|
|
|
%x = load i32* %p
|
|
|
|
%y = load volatile i32* %p
|
|
|
|
%add = sub i32 %y, %x
|
|
|
|
ret i32 %add
|
|
|
|
}
|
|
|
|
|
|
|
|
; If the query instruction is itself volatile, we *cannot*
|
|
|
|
; reorder it even if p and q are noalias
|
|
|
|
define i32 @test3(i32* noalias nocapture %p, i32* noalias nocapture %q) {
|
|
|
|
; CHECK-LABEL: test3
|
|
|
|
; CHECK: %x = load i32* %p
|
|
|
|
; CHECK-NEXT: %0 = load volatile i32* %q
|
|
|
|
; CHECK-NEXT: %y = load volatile i32* %p
|
|
|
|
entry:
|
|
|
|
%x = load i32* %p
|
|
|
|
load volatile i32* %q
|
|
|
|
%y = load volatile i32* %p
|
|
|
|
%add = sub i32 %y, %x
|
|
|
|
ret i32 %add
|
|
|
|
}
|
|
|
|
|
|
|
|
; If an encountered instruction is both volatile and ordered,
|
|
|
|
; we need to use the strictest ordering of either. In this
|
|
|
|
; case, the ordering prevents forwarding.
|
|
|
|
define i32 @test4(i32* noalias nocapture %p, i32* noalias nocapture %q) {
|
|
|
|
; CHECK-LABEL: test4
|
|
|
|
; CHECK: %x = load i32* %p
|
|
|
|
; CHECK-NEXT: %0 = load atomic volatile i32* %q seq_cst
|
|
|
|
; CHECK-NEXT: %y = load atomic i32* %p seq_cst
|
|
|
|
entry:
|
|
|
|
%x = load i32* %p
|
|
|
|
load atomic volatile i32* %q seq_cst, align 4
|
|
|
|
%y = load atomic i32* %p seq_cst, align 4
|
|
|
|
%add = sub i32 %y, %x
|
|
|
|
ret i32 %add
|
|
|
|
}
|
|
|
|
|
|
|
|
; Value forwarding from a volatile load is perfectly legal
|
|
|
|
define i32 @test5(i32* nocapture %p, i32* nocapture %q) {
|
|
|
|
; CHECK-LABEL: test5
|
|
|
|
; CHECK: %x = load volatile i32* %p
|
|
|
|
; CHECK-NEXT: ret i32 0
|
|
|
|
entry:
|
|
|
|
%x = load volatile i32* %p
|
|
|
|
%y = load i32* %p
|
|
|
|
%add = sub i32 %y, %x
|
|
|
|
ret i32 %add
|
|
|
|
}
|
|
|
|
|
2015-01-26 22:40:44 +00:00
|
|
|
; Does cross block redundancy elimination work with volatiles?
|
|
|
|
define i32 @test6(i32* noalias nocapture %p, i32* noalias nocapture %q) {
|
|
|
|
; CHECK-LABEL: test6
|
|
|
|
; CHECK: %y1 = load i32* %p
|
|
|
|
; CHECK-LABEL: header
|
|
|
|
; CHECK: %x = load volatile i32* %q
|
|
|
|
; CHECK-NEXT: %add = sub i32 %y1, %x
|
|
|
|
entry:
|
|
|
|
%y1 = load i32* %p
|
|
|
|
call void @use(i32 %y1)
|
|
|
|
br label %header
|
|
|
|
header:
|
|
|
|
%x = load volatile i32* %q
|
|
|
|
%y = load i32* %p
|
|
|
|
%add = sub i32 %y, %x
|
|
|
|
%cnd = icmp eq i32 %add, 0
|
|
|
|
br i1 %cnd, label %exit, label %header
|
|
|
|
exit:
|
|
|
|
ret i32 %add
|
|
|
|
}
|
|
|
|
|
|
|
|
; Does cross block PRE work with volatiles?
|
|
|
|
define i32 @test7(i1 %c, i32* noalias nocapture %p, i32* noalias nocapture %q) {
|
|
|
|
; CHECK-LABEL: test7
|
|
|
|
; CHECK-LABEL: entry.header_crit_edge:
|
|
|
|
; CHECK: %y.pre = load i32* %p
|
|
|
|
; CHECK-LABEL: skip:
|
|
|
|
; CHECK: %y1 = load i32* %p
|
|
|
|
; CHECK-LABEL: header:
|
|
|
|
; CHECK: %y = phi i32
|
|
|
|
; CHECK-NEXT: %x = load volatile i32* %q
|
|
|
|
; CHECK-NEXT: %add = sub i32 %y, %x
|
|
|
|
entry:
|
|
|
|
br i1 %c, label %header, label %skip
|
|
|
|
skip:
|
|
|
|
%y1 = load i32* %p
|
|
|
|
call void @use(i32 %y1)
|
|
|
|
br label %header
|
|
|
|
header:
|
|
|
|
%x = load volatile i32* %q
|
|
|
|
%y = load i32* %p
|
|
|
|
%add = sub i32 %y, %x
|
|
|
|
%cnd = icmp eq i32 %add, 0
|
|
|
|
br i1 %cnd, label %exit, label %header
|
|
|
|
exit:
|
|
|
|
ret i32 %add
|
|
|
|
}
|
|
|
|
|
|
|
|
; Another volatile PRE case - two paths through a loop
|
|
|
|
; load in preheader, one path read only, one not
|
|
|
|
define i32 @test8(i1 %b, i1 %c, i32* noalias %p, i32* noalias %q) {
|
|
|
|
; CHECK-LABEL: test8
|
|
|
|
; CHECK-LABEL: entry
|
|
|
|
; CHECK: %y1 = load i32* %p
|
|
|
|
; CHECK-LABEL: header:
|
|
|
|
; CHECK: %y = phi i32
|
|
|
|
; CHECK-NEXT: %x = load volatile i32* %q
|
|
|
|
; CHECK-NOT: load
|
|
|
|
; CHECK-LABEL: skip.header_crit_edge:
|
|
|
|
; CHECK: %y.pre = load i32* %p
|
|
|
|
entry:
|
|
|
|
%y1 = load i32* %p
|
|
|
|
call void @use(i32 %y1)
|
|
|
|
br label %header
|
|
|
|
header:
|
|
|
|
%x = load volatile i32* %q
|
|
|
|
%y = load i32* %p
|
|
|
|
call void @use(i32 %y)
|
|
|
|
br i1 %b, label %skip, label %header
|
|
|
|
skip:
|
|
|
|
; escaping the arguments is explicitly required since we marked
|
|
|
|
; them noalias
|
|
|
|
call void @clobber(i32* %p, i32* %q)
|
|
|
|
br i1 %c, label %header, label %exit
|
|
|
|
exit:
|
|
|
|
%add = sub i32 %y, %x
|
|
|
|
ret i32 %add
|
|
|
|
}
|
|
|
|
|
|
|
|
declare void @use(i32) readonly
|
|
|
|
declare void @clobber(i32* %p, i32* %q)
|
|
|
|
|