llvm-6502/lib/CodeGen/WinEHPrepare.cpp

627 lines
25 KiB
C++
Raw Normal View History

//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass lowers LLVM IR exception handling into something closer to what the
// backend wants. It snifs the personality function to see which kind of
// preparation is necessary. If the personality function uses the Itanium LSDA,
// this pass delegates to the DWARF EH preparation pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/LibCallSemantics.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include <memory>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "winehprepare"
namespace {
struct HandlerAllocas {
TinyPtrVector<AllocaInst *> Allocas;
int ParentFrameAllocationIndex;
};
// This map is used to model frame variable usage during outlining, to
// construct a structure type to hold the frame variables in a frame
// allocation block, and to remap the frame variable allocas (including
// spill locations as needed) to GEPs that get the variable from the
// frame allocation structure.
typedef MapVector<AllocaInst *, HandlerAllocas> FrameVarInfoMap;
class WinEHPrepare : public FunctionPass {
std::unique_ptr<FunctionPass> DwarfPrepare;
public:
static char ID; // Pass identification, replacement for typeid.
WinEHPrepare(const TargetMachine *TM = nullptr)
: FunctionPass(ID), DwarfPrepare(createDwarfEHPass(TM)) {}
bool runOnFunction(Function &Fn) override;
bool doFinalization(Module &M) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
const char *getPassName() const override {
return "Windows exception handling preparation";
}
private:
bool prepareCPPEHHandlers(Function &F,
SmallVectorImpl<LandingPadInst *> &LPads);
bool outlineCatchHandler(Function *SrcFn, Constant *SelectorType,
LandingPadInst *LPad, CallInst *&EHAlloc,
AllocaInst *&EHObjPtr, FrameVarInfoMap &VarInfo);
};
class WinEHFrameVariableMaterializer : public ValueMaterializer {
public:
WinEHFrameVariableMaterializer(Function *OutlinedFn,
FrameVarInfoMap &FrameVarInfo);
~WinEHFrameVariableMaterializer() {}
virtual Value *materializeValueFor(Value *V) override;
private:
FrameVarInfoMap &FrameVarInfo;
IRBuilder<> Builder;
};
class WinEHCatchDirector : public CloningDirector {
public:
WinEHCatchDirector(LandingPadInst *LPI, Function *CatchFn, Value *Selector,
Value *EHObj, FrameVarInfoMap &VarInfo)
: LPI(LPI), CurrentSelector(Selector->stripPointerCasts()), EHObj(EHObj),
Materializer(CatchFn, VarInfo),
SelectorIDType(Type::getInt32Ty(LPI->getContext())),
Int8PtrType(Type::getInt8PtrTy(LPI->getContext())) {}
CloningAction handleInstruction(ValueToValueMapTy &VMap,
const Instruction *Inst,
BasicBlock *NewBB) override;
ValueMaterializer *getValueMaterializer() override { return &Materializer; }
private:
LandingPadInst *LPI;
Value *CurrentSelector;
Value *EHObj;
WinEHFrameVariableMaterializer Materializer;
Type *SelectorIDType;
Type *Int8PtrType;
const Value *ExtractedEHPtr;
const Value *ExtractedSelector;
const Value *EHPtrStoreAddr;
const Value *SelectorStoreAddr;
};
} // end anonymous namespace
char WinEHPrepare::ID = 0;
INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions",
false, false)
FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
return new WinEHPrepare(TM);
}
static bool isMSVCPersonality(EHPersonality Pers) {
return Pers == EHPersonality::MSVC_Win64SEH ||
Pers == EHPersonality::MSVC_CXX;
}
bool WinEHPrepare::runOnFunction(Function &Fn) {
SmallVector<LandingPadInst *, 4> LPads;
SmallVector<ResumeInst *, 4> Resumes;
for (BasicBlock &BB : Fn) {
if (auto *LP = BB.getLandingPadInst())
LPads.push_back(LP);
if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator()))
Resumes.push_back(Resume);
}
// No need to prepare functions that lack landing pads.
if (LPads.empty())
return false;
// Classify the personality to see what kind of preparation we need.
EHPersonality Pers = classifyEHPersonality(LPads.back()->getPersonalityFn());
// Delegate through to the DWARF pass if this is unrecognized.
if (!isMSVCPersonality(Pers))
return DwarfPrepare->runOnFunction(Fn);
// FIXME: This only returns true if the C++ EH handlers were outlined.
// When that code is complete, it should always return whatever
// prepareCPPEHHandlers returns.
if (Pers == EHPersonality::MSVC_CXX && prepareCPPEHHandlers(Fn, LPads))
return true;
// FIXME: SEH Cleanups are unimplemented. Replace them with unreachable.
if (Resumes.empty())
return false;
for (ResumeInst *Resume : Resumes) {
IRBuilder<>(Resume).CreateUnreachable();
Resume->eraseFromParent();
}
return true;
}
bool WinEHPrepare::doFinalization(Module &M) {
return DwarfPrepare->doFinalization(M);
}
void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
DwarfPrepare->getAnalysisUsage(AU);
}
bool WinEHPrepare::prepareCPPEHHandlers(
Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
// These containers are used to re-map frame variables that are used in
// outlined catch and cleanup handlers. They will be populated as the
// handlers are outlined.
FrameVarInfoMap FrameVarInfo;
SmallVector<CallInst *, 4> HandlerAllocs;
SmallVector<AllocaInst *, 4> HandlerEHObjPtrs;
bool HandlersOutlined = false;
for (LandingPadInst *LPad : LPads) {
// Look for evidence that this landingpad has already been processed.
bool LPadHasActionList = false;
BasicBlock *LPadBB = LPad->getParent();
for (Instruction &Inst : LPadBB->getInstList()) {
// FIXME: Make this an intrinsic.
if (auto *Call = dyn_cast<CallInst>(&Inst))
if (Call->getCalledFunction()->getName() == "llvm.eh.actions") {
LPadHasActionList = true;
break;
}
}
// If we've already outlined the handlers for this landingpad,
// there's nothing more to do here.
if (LPadHasActionList)
continue;
for (unsigned Idx = 0, NumClauses = LPad->getNumClauses(); Idx < NumClauses;
++Idx) {
if (LPad->isCatch(Idx)) {
// Create a new instance of the handler data structure in the
// HandlerData vector.
CallInst *EHAlloc = nullptr;
AllocaInst *EHObjPtr = nullptr;
bool Outlined = outlineCatchHandler(&F, LPad->getClause(Idx), LPad,
EHAlloc, EHObjPtr, FrameVarInfo);
if (Outlined) {
HandlersOutlined = true;
// These values must be resolved after all handlers have been
// outlined.
if (EHAlloc)
HandlerAllocs.push_back(EHAlloc);
if (EHObjPtr)
HandlerEHObjPtrs.push_back(EHObjPtr);
}
} // End if (isCatch)
} // End for each clause
} // End for each landingpad
// If nothing got outlined, there is no more processing to be done.
if (!HandlersOutlined)
return false;
// FIXME: We will replace the landingpad bodies with llvm.eh.actions
// calls and indirect branches here and then delete blocks
// which are no longer reachable. That will get rid of the
// handlers that we have outlined. There is code below
// that looks for allocas with no uses in the parent function.
// That will only happen after the pruning is implemented.
// Remap the frame variables.
SmallVector<Type *, 2> StructTys;
StructTys.push_back(Type::getInt32Ty(F.getContext())); // EH state
StructTys.push_back(Type::getInt8PtrTy(F.getContext())); // EH object
// Start the index at two since we always have the above fields at 0 and 1.
int Idx = 2;
// FIXME: Sort the FrameVarInfo vector by the ParentAlloca size and alignment
// and add padding as necessary to provide the proper alignment.
// Map the alloca instructions to the corresponding index in the
// frame allocation structure. If any alloca is used only in a single
// handler and is not used in the parent frame after outlining, it will
// be assigned an index of -1, meaning the handler can keep its
// "temporary" alloca and the original alloca can be erased from the
// parent function. If we later encounter this alloca in a second
// handler, we will assign it a place in the frame allocation structure
// at that time. Since the instruction replacement doesn't happen until
// all the entries in the HandlerData have been processed this isn't a
// problem.
for (auto &VarInfoEntry : FrameVarInfo) {
AllocaInst *ParentAlloca = VarInfoEntry.first;
HandlerAllocas &AllocaInfo = VarInfoEntry.second;
// If the instruction still has uses in the parent function or if it is
// referenced by more than one handler, add it to the frame allocation
// structure.
if (ParentAlloca->getNumUses() != 0 || AllocaInfo.Allocas.size() > 1) {
Type *VarTy = ParentAlloca->getAllocatedType();
StructTys.push_back(VarTy);
AllocaInfo.ParentFrameAllocationIndex = Idx++;
} else {
// If the variable is not used in the parent frame and it is only used
// in one handler, the alloca can be removed from the parent frame
// and the handler will keep its "temporary" alloca to define the value.
// An element index of -1 is used to indicate this condition.
AllocaInfo.ParentFrameAllocationIndex = -1;
}
}
// Having filled the StructTys vector and assigned an index to each element,
// we can now create the structure.
StructType *EHDataStructTy = StructType::create(
F.getContext(), StructTys, "struct." + F.getName().str() + ".ehdata");
IRBuilder<> Builder(F.getParent()->getContext());
// Create a frame allocation.
Module *M = F.getParent();
LLVMContext &Context = M->getContext();
BasicBlock *Entry = &F.getEntryBlock();
Builder.SetInsertPoint(Entry->getFirstInsertionPt());
Function *FrameAllocFn =
Intrinsic::getDeclaration(M, Intrinsic::frameallocate);
uint64_t EHAllocSize = M->getDataLayout()->getTypeAllocSize(EHDataStructTy);
Value *FrameAllocArgs[] = {
ConstantInt::get(Type::getInt32Ty(Context), EHAllocSize)};
CallInst *FrameAlloc =
Builder.CreateCall(FrameAllocFn, FrameAllocArgs, "frame.alloc");
Value *FrameEHData = Builder.CreateBitCast(
FrameAlloc, EHDataStructTy->getPointerTo(), "eh.data");
// Now visit each handler that is using the structure and bitcast its EHAlloc
// value to be a pointer to the frame alloc structure.
DenseMap<Function *, Value *> EHDataMap;
for (CallInst *EHAlloc : HandlerAllocs) {
// The EHAlloc has no uses at this time, so we need to just insert the
// cast before the next instruction. There is always a next instruction.
BasicBlock::iterator II = EHAlloc;
++II;
Builder.SetInsertPoint(cast<Instruction>(II));
Value *EHData = Builder.CreateBitCast(
EHAlloc, EHDataStructTy->getPointerTo(), "eh.data");
EHDataMap[EHAlloc->getParent()->getParent()] = EHData;
}
// Next, replace the place-holder EHObjPtr allocas with GEP instructions
// that pull the EHObjPtr from the frame alloc structure
for (AllocaInst *EHObjPtr : HandlerEHObjPtrs) {
Value *EHData = EHDataMap[EHObjPtr->getParent()->getParent()];
Builder.SetInsertPoint(EHObjPtr);
Value *ElementPtr = Builder.CreateConstInBoundsGEP2_32(EHData, 0, 1);
EHObjPtr->replaceAllUsesWith(ElementPtr);
EHObjPtr->removeFromParent();
ElementPtr->takeName(EHObjPtr);
delete EHObjPtr;
}
// Finally, replace all of the temporary allocas for frame variables used in
// the outlined handlers and the original frame allocas with GEP instructions
// that get the equivalent pointer from the frame allocation struct.
for (auto &VarInfoEntry : FrameVarInfo) {
AllocaInst *ParentAlloca = VarInfoEntry.first;
HandlerAllocas &AllocaInfo = VarInfoEntry.second;
int Idx = AllocaInfo.ParentFrameAllocationIndex;
// If we have an index of -1 for this instruction, it means it isn't used
// outside of this handler. In that case, we just keep the "temporary"
// alloca in the handler and erase the original alloca from the parent.
if (Idx == -1) {
ParentAlloca->eraseFromParent();
} else {
// Otherwise, we replace the parent alloca and all outlined allocas
// which map to it with GEP instructions.
// First replace the original alloca.
Builder.SetInsertPoint(ParentAlloca);
Builder.SetCurrentDebugLocation(ParentAlloca->getDebugLoc());
Value *ElementPtr =
Builder.CreateConstInBoundsGEP2_32(FrameEHData, 0, Idx);
ParentAlloca->replaceAllUsesWith(ElementPtr);
ParentAlloca->removeFromParent();
ElementPtr->takeName(ParentAlloca);
delete ParentAlloca;
// Next replace all outlined allocas that are mapped to it.
for (AllocaInst *TempAlloca : AllocaInfo.Allocas) {
Value *EHData = EHDataMap[TempAlloca->getParent()->getParent()];
// FIXME: Sink this GEP into the blocks where it is used.
Builder.SetInsertPoint(TempAlloca);
Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc());
ElementPtr = Builder.CreateConstInBoundsGEP2_32(EHData, 0, Idx);
TempAlloca->replaceAllUsesWith(ElementPtr);
TempAlloca->removeFromParent();
ElementPtr->takeName(TempAlloca);
delete TempAlloca;
}
} // end else of if (Idx == -1)
} // End for each FrameVarInfo entry.
return HandlersOutlined;
}
bool WinEHPrepare::outlineCatchHandler(Function *SrcFn, Constant *SelectorType,
LandingPadInst *LPad, CallInst *&EHAlloc,
AllocaInst *&EHObjPtr,
FrameVarInfoMap &VarInfo) {
Module *M = SrcFn->getParent();
LLVMContext &Context = M->getContext();
// Create a new function to receive the handler contents.
Type *Int8PtrType = Type::getInt8PtrTy(Context);
std::vector<Type *> ArgTys;
ArgTys.push_back(Int8PtrType);
ArgTys.push_back(Int8PtrType);
FunctionType *FnType = FunctionType::get(Int8PtrType, ArgTys, false);
Function *CatchHandler = Function::Create(
FnType, GlobalVariable::ExternalLinkage, SrcFn->getName() + ".catch", M);
// Generate a standard prolog to setup the frame recovery structure.
IRBuilder<> Builder(Context);
BasicBlock *Entry = BasicBlock::Create(Context, "catch.entry");
CatchHandler->getBasicBlockList().push_front(Entry);
Builder.SetInsertPoint(Entry);
Builder.SetCurrentDebugLocation(LPad->getDebugLoc());
// The outlined handler will be called with the parent's frame pointer as
// its second argument. To enable the handler to access variables from
// the parent frame, we use that pointer to get locate a special block
// of memory that was allocated using llvm.eh.allocateframe for this
// purpose. During the outlining process we will determine which frame
// variables are used in handlers and create a structure that maps these
// variables into the frame allocation block.
//
// The frame allocation block also contains an exception state variable
// used by the runtime and a pointer to the exception object pointer
// which will be filled in by the runtime for use in the handler.
Function *RecoverFrameFn =
Intrinsic::getDeclaration(M, Intrinsic::framerecover);
Value *RecoverArgs[] = {Builder.CreateBitCast(SrcFn, Int8PtrType, ""),
&(CatchHandler->getArgumentList().back())};
EHAlloc = Builder.CreateCall(RecoverFrameFn, RecoverArgs, "eh.alloc");
// This alloca is only temporary. We'll be replacing it once we know all the
// frame variables that need to go in the frame allocation structure.
EHObjPtr = Builder.CreateAlloca(Int8PtrType, 0, "eh.obj.ptr");
// This will give us a raw pointer to the exception object, which
// corresponds to the formal parameter of the catch statement. If the
// handler uses this object, we will generate code during the outlining
// process to cast the pointer to the appropriate type and deference it
// as necessary. The un-outlined landing pad code represents the
// exception object as the result of the llvm.eh.begincatch call.
Value *EHObj = Builder.CreateLoad(EHObjPtr, false, "eh.obj");
ValueToValueMapTy VMap;
// FIXME: Map other values referenced in the filter handler.
WinEHCatchDirector Director(LPad, CatchHandler, SelectorType, EHObj, VarInfo);
SmallVector<ReturnInst *, 8> Returns;
ClonedCodeInfo InlinedFunctionInfo;
BasicBlock::iterator II = LPad;
CloneAndPruneIntoFromInst(CatchHandler, SrcFn, ++II, VMap,
/*ModuleLevelChanges=*/false, Returns, "",
&InlinedFunctionInfo,
SrcFn->getParent()->getDataLayout(), &Director);
// Move all the instructions in the first cloned block into our entry block.
BasicBlock *FirstClonedBB = std::next(Function::iterator(Entry));
Entry->getInstList().splice(Entry->end(), FirstClonedBB->getInstList());
FirstClonedBB->eraseFromParent();
return true;
}
CloningDirector::CloningAction WinEHCatchDirector::handleInstruction(
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
// Intercept instructions which extract values from the landing pad aggregate.
if (auto *Extract = dyn_cast<ExtractValueInst>(Inst)) {
if (Extract->getAggregateOperand() == LPI) {
assert(Extract->getNumIndices() == 1 &&
"Unexpected operation: extracting both landing pad values");
assert((*(Extract->idx_begin()) == 0 || *(Extract->idx_begin()) == 1) &&
"Unexpected operation: extracting an unknown landing pad element");
if (*(Extract->idx_begin()) == 0) {
// Element 0 doesn't directly corresponds to anything in the WinEH
// scheme.
// It will be stored to a memory location, then later loaded and finally
// the loaded value will be used as the argument to an
// llvm.eh.begincatch
// call. We're tracking it here so that we can skip the store and load.
ExtractedEHPtr = Inst;
} else {
// Element 1 corresponds to the filter selector. We'll map it to 1 for
// matching purposes, but it will also probably be stored to memory and
// reloaded, so we need to track the instuction so that we can map the
// loaded value too.
VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
ExtractedSelector = Inst;
}
// Tell the caller not to clone this instruction.
return CloningDirector::SkipInstruction;
}
// Other extract value instructions just get cloned.
return CloningDirector::CloneInstruction;
}
if (auto *Store = dyn_cast<StoreInst>(Inst)) {
// Look for and suppress stores of the extracted landingpad values.
const Value *StoredValue = Store->getValueOperand();
if (StoredValue == ExtractedEHPtr) {
EHPtrStoreAddr = Store->getPointerOperand();
return CloningDirector::SkipInstruction;
}
if (StoredValue == ExtractedSelector) {
SelectorStoreAddr = Store->getPointerOperand();
return CloningDirector::SkipInstruction;
}
// Any other store just gets cloned.
return CloningDirector::CloneInstruction;
}
if (auto *Load = dyn_cast<LoadInst>(Inst)) {
// Look for loads of (previously suppressed) landingpad values.
// The EHPtr load can be ignored (it should only be used as
// an argument to llvm.eh.begincatch), but the selector value
// needs to be mapped to a constant value of 1 to be used to
// simplify the branching to always flow to the current handler.
const Value *LoadAddr = Load->getPointerOperand();
if (LoadAddr == EHPtrStoreAddr) {
VMap[Inst] = UndefValue::get(Int8PtrType);
return CloningDirector::SkipInstruction;
}
if (LoadAddr == SelectorStoreAddr) {
VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
return CloningDirector::SkipInstruction;
}
// Any other loads just get cloned.
return CloningDirector::CloneInstruction;
}
if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>())) {
// The argument to the call is some form of the first element of the
// landingpad aggregate value, but that doesn't matter. It isn't used
// here.
// The return value of this instruction, however, is used to access the
// EH object pointer. We have generated an instruction to get that value
// from the EH alloc block, so we can just map to that here.
VMap[Inst] = EHObj;
return CloningDirector::SkipInstruction;
}
if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>())) {
auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
// It might be interesting to track whether or not we are inside a catch
// function, but that might make the algorithm more brittle than it needs
// to be.
// The end catch call can occur in one of two places: either in a
// landingpad
// block that is part of the catch handlers exception mechanism, or at the
// end of the catch block. If it occurs in a landing pad, we must skip it
// and continue so that the landing pad gets cloned.
// FIXME: This case isn't fully supported yet and shouldn't turn up in any
// of the test cases until it is.
if (IntrinCall->getParent()->isLandingPad())
return CloningDirector::SkipInstruction;
// If an end catch occurs anywhere else the next instruction should be an
// unconditional branch instruction that we want to replace with a return
// to the the address of the branch target.
const BasicBlock *EndCatchBB = IntrinCall->getParent();
const TerminatorInst *Terminator = EndCatchBB->getTerminator();
const BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
assert(Branch && Branch->isUnconditional());
assert(std::next(BasicBlock::const_iterator(IntrinCall)) ==
BasicBlock::const_iterator(Branch));
ReturnInst::Create(NewBB->getContext(),
BlockAddress::get(Branch->getSuccessor(0)), NewBB);
// We just added a terminator to the cloned block.
// Tell the caller to stop processing the current basic block so that
// the branch instruction will be skipped.
return CloningDirector::StopCloningBB;
}
if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>())) {
auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
// This causes a replacement that will collapse the landing pad CFG based
// on the filter function we intend to match.
if (Selector == CurrentSelector)
VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
else
VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
// Tell the caller not to clone this instruction.
return CloningDirector::SkipInstruction;
}
// Continue with the default cloning behavior.
return CloningDirector::CloneInstruction;
}
WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer(
Function *OutlinedFn, FrameVarInfoMap &FrameVarInfo)
: FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) {
Builder.SetInsertPoint(&OutlinedFn->getEntryBlock());
// FIXME: Do something with the FrameVarMapped so that it is shared across the
// function.
}
Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) {
// If we're asked to materialize an alloca variable, we temporarily
// create a matching alloca in the outlined function. When all the
// outlining is complete, we'll collect these into a structure and
// replace these temporary allocas with GEPs referencing the frame
// allocation block.
if (auto *AV = dyn_cast<AllocaInst>(V)) {
AllocaInst *NewAlloca = Builder.CreateAlloca(
AV->getAllocatedType(), AV->getArraySize(), AV->getName());
FrameVarInfo[AV].Allocas.push_back(NewAlloca);
return NewAlloca;
}
// FIXME: Do PHI nodes need special handling?
// FIXME: Are there other cases we can handle better? GEP, ExtractValue, etc.
// FIXME: This doesn't work during cloning because it finds an instruction
// in the use list that isn't yet part of a basic block.
#if 0
// If we're asked to remap some other instruction, we'll need to
// spill it to an alloca variable in the parent function and add a
// temporary alloca in the outlined function to be processed as
// described above.
Instruction *Inst = dyn_cast<Instruction>(V);
if (Inst) {
AllocaInst *Spill = DemoteRegToStack(*Inst, true);
AllocaInst *NewAlloca = Builder.CreateAlloca(Spill->getAllocatedType(),
Spill->getArraySize());
FrameVarMap[AV] = NewAlloca;
return NewAlloca;
}
#endif
return nullptr;
}