llvm-6502/tools/verify-uselistorder/verify-uselistorder.cpp

410 lines
12 KiB
C++
Raw Normal View History

//===- verify-uselistorder.cpp - The LLVM Modular Optimizer ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Verify that use-list order can be serialized correctly. After reading the
// provided IR, this tool shuffles the use-lists and then writes and reads to a
// separate Module whose use-list orders are compared to the original.
//
// The shuffles are deterministic and somewhat naive. On a given shuffle, some
// use-lists will not change at all. The algorithm per iteration is as follows:
//
// 1. Seed the random number generator. The seed is different for each
// shuffle. Shuffle 0 uses default+0, shuffle 1 uses default+1, and so on.
//
// 2. Visit every Value in a deterministic order.
//
// 3. Assign a random number to each Use in the Value's use-list in order.
//
// 4. Sort the use-list using Value::sortUseList(), which is a stable sort.
//
// Shuffling a larger number of times provides a better statistical guarantee
// that each use-list has changed at least once.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/UseListOrder.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/SystemUtils.h"
using namespace llvm;
#define DEBUG_TYPE "use-list-order"
static cl::opt<std::string> InputFilename(cl::Positional,
cl::desc("<input bitcode file>"),
cl::init("-"),
cl::value_desc("filename"));
static cl::opt<bool> SaveTemps("save-temps", cl::desc("Save temp files"),
cl::init(false));
static cl::opt<unsigned>
NumShuffles("num-shuffles",
cl::desc("Number of times to shuffle and verify use-lists"),
cl::init(5));
namespace {
struct TempFile {
std::string Filename;
FileRemover Remover;
bool init(const std::string &Ext);
bool writeBitcode(const Module &M) const;
bool writeAssembly(const Module &M) const;
std::unique_ptr<Module> readBitcode(LLVMContext &Context) const;
std::unique_ptr<Module> readAssembly(LLVMContext &Context) const;
};
struct ValueMapping {
DenseMap<const Value *, unsigned> IDs;
std::vector<const Value *> Values;
/// \brief Construct a value mapping for module.
///
/// Creates mapping from every value in \c M to an ID. This mapping includes
/// un-referencable values.
///
/// Every \a Value that gets serialized in some way should be represented
/// here. The order needs to be deterministic, but it's unnecessary to match
/// the value-ids in the bitcode writer.
///
/// All constants that are referenced by other values are included in the
/// mapping, but others -- which wouldn't be serialized -- are not.
ValueMapping(const Module &M);
/// \brief Map a value.
///
/// Maps a value. If it's a constant, maps all of its operands first.
void map(const Value *V);
unsigned lookup(const Value *V) const { return IDs.lookup(V); }
};
} // end namespace
bool TempFile::init(const std::string &Ext) {
SmallVector<char, 64> Vector;
DEBUG(dbgs() << " - create-temp-file\n");
if (auto EC = sys::fs::createTemporaryFile("use-list-order", Ext, Vector)) {
(void)EC;
DEBUG(dbgs() << "error: " << EC.message() << "\n");
return true;
}
assert(!Vector.empty());
Filename.assign(Vector.data(), Vector.data() + Vector.size());
Remover.setFile(Filename, !SaveTemps);
DEBUG(dbgs() << " - filename = " << Filename << "\n");
return false;
}
bool TempFile::writeBitcode(const Module &M) const {
DEBUG(dbgs() << " - write bitcode\n");
std::string ErrorInfo;
raw_fd_ostream OS(Filename.c_str(), ErrorInfo, sys::fs::F_None);
if (!ErrorInfo.empty()) {
DEBUG(dbgs() << "error: " << ErrorInfo << "\n");
return true;
}
WriteBitcodeToFile(&M, OS);
return false;
}
bool TempFile::writeAssembly(const Module &M) const {
DEBUG(dbgs() << " - write assembly\n");
std::string ErrorInfo;
raw_fd_ostream OS(Filename.c_str(), ErrorInfo, sys::fs::F_Text);
if (!ErrorInfo.empty()) {
DEBUG(dbgs() << "error: " << ErrorInfo << "\n");
return true;
}
OS << M;
return false;
}
std::unique_ptr<Module> TempFile::readBitcode(LLVMContext &Context) const {
DEBUG(dbgs() << " - read bitcode\n");
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOr =
MemoryBuffer::getFile(Filename);
if (!BufferOr) {
DEBUG(dbgs() << "error: " << BufferOr.getError().message() << "\n");
return nullptr;
}
std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOr.get());
ErrorOr<Module *> ModuleOr = parseBitcodeFile(Buffer.get(), Context);
if (!ModuleOr) {
DEBUG(dbgs() << "error: " << ModuleOr.getError().message() << "\n");
return nullptr;
}
return std::unique_ptr<Module>(ModuleOr.get());
}
std::unique_ptr<Module> TempFile::readAssembly(LLVMContext &Context) const {
DEBUG(dbgs() << " - read assembly\n");
SMDiagnostic Err;
std::unique_ptr<Module> M(ParseAssemblyFile(Filename, Err, Context));
if (!M.get())
DEBUG(dbgs() << "error: "; Err.print("verify-use-list-order", dbgs()));
return M;
}
ValueMapping::ValueMapping(const Module &M) {
// Every value should be mapped, including things like void instructions and
// basic blocks that are kept out of the ValueEnumerator.
//
// The current mapping order makes it easier to debug the tables. It happens
// to be similar to the ID mapping when writing ValueEnumerator, but they
// aren't (and needn't be) in sync.
// Globals.
for (const GlobalVariable &G : M.globals())
map(&G);
for (const GlobalAlias &A : M.aliases())
map(&A);
for (const Function &F : M)
map(&F);
// Constants used by globals.
for (const GlobalVariable &G : M.globals())
if (G.hasInitializer())
map(G.getInitializer());
for (const GlobalAlias &A : M.aliases())
map(A.getAliasee());
for (const Function &F : M)
if (F.hasPrefixData())
map(F.getPrefixData());
// Function bodies.
for (const Function &F : M) {
for (const Argument &A : F.args())
map(&A);
for (const BasicBlock &BB : F)
map(&BB);
for (const BasicBlock &BB : F)
for (const Instruction &I : BB)
map(&I);
// Constants used by instructions.
for (const BasicBlock &BB : F)
for (const Instruction &I : BB)
for (const Value *Op : I.operands())
if ((isa<Constant>(Op) && !isa<GlobalValue>(*Op)) ||
isa<InlineAsm>(Op))
map(Op);
}
}
void ValueMapping::map(const Value *V) {
if (IDs.lookup(V))
return;
if (auto *C = dyn_cast<Constant>(V))
if (!isa<GlobalValue>(C))
for (const Value *Op : C->operands())
map(Op);
Values.push_back(V);
IDs[V] = Values.size();
}
#ifndef NDEBUG
static void dumpMapping(const ValueMapping &VM) {
dbgs() << "value-mapping (size = " << VM.Values.size() << "):\n";
for (unsigned I = 0, E = VM.Values.size(); I != E; ++I) {
dbgs() << " - id = " << I << ", value = ";
VM.Values[I]->dump();
}
}
static void debugValue(const ValueMapping &M, unsigned I, StringRef Desc) {
const Value *V = M.Values[I];
dbgs() << " - " << Desc << " value = ";
V->dump();
for (const Use &U : V->uses()) {
dbgs() << " => use: op = " << U.getOperandNo()
<< ", user-id = " << M.IDs.lookup(U.getUser()) << ", user = ";
U.getUser()->dump();
}
}
static void debugUserMismatch(const ValueMapping &L, const ValueMapping &R,
unsigned I) {
dbgs() << " - fail: user mismatch: ID = " << I << "\n";
debugValue(L, I, "LHS");
debugValue(R, I, "RHS");
dbgs() << "\nlhs-";
dumpMapping(L);
dbgs() << "\nrhs-";
dumpMapping(R);
}
static void debugSizeMismatch(const ValueMapping &L, const ValueMapping &R) {
dbgs() << " - fail: map size: " << L.Values.size()
<< " != " << R.Values.size() << "\n";
dbgs() << "\nlhs-";
dumpMapping(L);
dbgs() << "\nrhs-";
dumpMapping(R);
}
#endif
static bool matches(const ValueMapping &LM, const ValueMapping &RM) {
DEBUG(dbgs() << "compare value maps\n");
if (LM.Values.size() != RM.Values.size()) {
DEBUG(debugSizeMismatch(LM, RM));
return false;
}
// This mapping doesn't include dangling constant users, since those don't
// get serialized. However, checking if users are constant and calling
// isConstantUsed() on every one is very expensive. Instead, just check if
// the user is mapped.
auto skipUnmappedUsers =
[&](Value::const_use_iterator &U, Value::const_use_iterator E,
const ValueMapping &M) {
while (U != E && !M.lookup(U->getUser()))
++U;
};
// Iterate through all values, and check that both mappings have the same
// users.
for (unsigned I = 0, E = LM.Values.size(); I != E; ++I) {
const Value *L = LM.Values[I];
const Value *R = RM.Values[I];
auto LU = L->use_begin(), LE = L->use_end();
auto RU = R->use_begin(), RE = R->use_end();
skipUnmappedUsers(LU, LE, LM);
skipUnmappedUsers(RU, RE, RM);
while (LU != LE) {
if (RU == RE) {
DEBUG(debugUserMismatch(LM, RM, I));
return false;
}
if (LM.lookup(LU->getUser()) != RM.lookup(RU->getUser())) {
DEBUG(debugUserMismatch(LM, RM, I));
return false;
}
if (LU->getOperandNo() != RU->getOperandNo()) {
DEBUG(debugUserMismatch(LM, RM, I));
return false;
}
skipUnmappedUsers(++LU, LE, LM);
skipUnmappedUsers(++RU, RE, RM);
}
if (RU != RE) {
DEBUG(debugUserMismatch(LM, RM, I));
return false;
}
}
return true;
}
static bool verifyBitcodeUseListOrder(const Module &M) {
DEBUG(dbgs() << "*** verify-use-list-order: bitcode ***\n");
TempFile F;
if (F.init("bc"))
return false;
if (F.writeBitcode(M))
return false;
LLVMContext Context;
std::unique_ptr<Module> OtherM = F.readBitcode(Context);
if (!OtherM)
return false;
return matches(ValueMapping(M), ValueMapping(*OtherM));
}
static bool verifyAssemblyUseListOrder(const Module &M) {
DEBUG(dbgs() << "*** verify-use-list-order: assembly ***\n");
TempFile F;
if (F.init("ll"))
return false;
if (F.writeAssembly(M))
return false;
LLVMContext Context;
std::unique_ptr<Module> OtherM = F.readAssembly(Context);
if (!OtherM)
return false;
return matches(ValueMapping(M), ValueMapping(*OtherM));
}
int main(int argc, char **argv) {
sys::PrintStackTraceOnErrorSignal();
llvm::PrettyStackTraceProgram X(argc, argv);
// Enable debug stream buffering.
EnableDebugBuffering = true;
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
LLVMContext &Context = getGlobalContext();
cl::ParseCommandLineOptions(argc, argv,
"llvm tool to verify use-list order\n");
SMDiagnostic Err;
// Load the input module...
std::unique_ptr<Module> M;
M.reset(ParseIRFile(InputFilename, Err, Context));
if (!M.get()) {
Err.print(argv[0], errs());
return 1;
}
DEBUG(dbgs() << "*** verify-use-list-order ***\n");
if (!shouldPreserveBitcodeUseListOrder()) {
// Can't verify if order isn't preserved.
DEBUG(dbgs() << "warning: cannot verify bitcode; "
"try -preserve-bc-use-list-order\n");
return 0;
}
for (unsigned I = 0, E = NumShuffles; I != E; ++I) {
DEBUG(dbgs() << "*** iteration: " << I << " ***\n");
// Shuffle with a different seed each time so that use-lists that aren't
// modified the first time are likely to be modified the next time.
shuffleUseLists(*M, I);
if (!verifyBitcodeUseListOrder(*M))
report_fatal_error("bitcode use-list order changed");
if (shouldPreserveAssemblyUseListOrder())
if (!verifyAssemblyUseListOrder(*M))
report_fatal_error("assembly use-list order changed");
}
return 0;
}