llvm-6502/lib/Target/ARM/AsmParser/ARMAsmParser.cpp

497 lines
15 KiB
C++
Raw Normal View History

//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAsmLexer.h"
#include "llvm/MC/MCAsmParser.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Target/TargetAsmParser.h"
using namespace llvm;
namespace {
struct ARMOperand;
// The shift types for register controlled shifts in arm memory addressing
enum ShiftType {
Lsl,
Lsr,
Asr,
Ror,
Rrx
};
class ARMAsmParser : public TargetAsmParser {
MCAsmParser &Parser;
private:
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
bool ParseRegister(ARMOperand &Op);
bool ParseMemory(ARMOperand &Op);
bool ParseShift(enum ShiftType *St, const MCExpr *ShiftAmount);
bool ParseOperand(ARMOperand &Op);
bool ParseDirectiveWord(unsigned Size, SMLoc L);
// TODO - For now hacked versions of the next two are in here in this file to
// allow some parser testing until the table gen versions are implemented.
/// @name Auto-generated Match Functions
/// {
bool MatchInstruction(SmallVectorImpl<ARMOperand> &Operands,
MCInst &Inst);
/// MatchRegisterName - Match the given string to a register name, or 0 if
/// there is no match.
unsigned MatchRegisterName(const StringRef &Name);
/// }
public:
ARMAsmParser(const Target &T, MCAsmParser &_Parser)
: TargetAsmParser(T), Parser(_Parser) {}
virtual bool ParseInstruction(const StringRef &Name, MCInst &Inst);
virtual bool ParseDirective(AsmToken DirectiveID);
};
} // end anonymous namespace
namespace {
/// ARMOperand - Instances of this class represent a parsed ARM machine
/// instruction.
struct ARMOperand {
enum {
Token,
Register,
Memory
} Kind;
union {
struct {
const char *Data;
unsigned Length;
} Tok;
struct {
unsigned RegNum;
} Reg;
// This is for all forms of ARM address expressions
struct {
unsigned BaseRegNum;
bool OffsetIsReg;
const MCExpr *Offset; // used when OffsetIsReg is false
unsigned OffsetRegNum; // used when OffsetIsReg is true
bool OffsetRegShifted; // only used when OffsetIsReg is true
enum ShiftType ShiftType; // used when OffsetRegShifted is true
const MCExpr *ShiftAmount; // used when OffsetRegShifted is true
bool Preindexed;
bool Postindexed;
bool Negative; // only used when OffsetIsReg is true
bool Writeback;
} Mem;
};
StringRef getToken() const {
assert(Kind == Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
unsigned getReg() const {
assert(Kind == Register && "Invalid access!");
return Reg.RegNum;
}
bool isToken() const {return Kind == Token; }
bool isReg() const { return Kind == Register; }
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
static ARMOperand CreateToken(StringRef Str) {
ARMOperand Res;
Res.Kind = Token;
Res.Tok.Data = Str.data();
Res.Tok.Length = Str.size();
return Res;
}
static ARMOperand CreateReg(unsigned RegNum) {
ARMOperand Res;
Res.Kind = Register;
Res.Reg.RegNum = RegNum;
return Res;
}
static ARMOperand CreateMem(unsigned BaseRegNum, bool OffsetIsReg,
const MCExpr *Offset, unsigned OffsetRegNum,
bool OffsetRegShifted, enum ShiftType ShiftType,
const MCExpr *ShiftAmount, bool Preindexed,
bool Postindexed, bool Negative, bool Writeback) {
ARMOperand Res;
Res.Kind = Memory;
Res.Mem.BaseRegNum = BaseRegNum;
Res.Mem.OffsetIsReg = OffsetIsReg;
Res.Mem.Offset = Offset;
Res.Mem.OffsetRegNum = OffsetRegNum;
Res.Mem.OffsetRegShifted = OffsetRegShifted;
Res.Mem.ShiftType = ShiftType;
Res.Mem.ShiftAmount = ShiftAmount;
Res.Mem.Preindexed = Preindexed;
Res.Mem.Postindexed = Postindexed;
Res.Mem.Negative = Negative;
Res.Mem.Writeback = Writeback;
return Res;
}
};
} // end anonymous namespace.
// Try to parse a register name. The token must be an Identifier when called,
// and if it is a register name a Reg operand is created, the token is eaten
// and false is returned. Else true is returned and no token is eaten.
// TODO this is likely to change to allow different register types and or to
// parse for a specific register type.
bool ARMAsmParser::ParseRegister(ARMOperand &Op) {
const AsmToken &Tok = getLexer().getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
// FIXME: Validate register for the current architecture; we have to do
// validation later, so maybe there is no need for this here.
unsigned RegNum;
RegNum = MatchRegisterName(Tok.getString());
if (RegNum == 0)
return true;
Op = ARMOperand::CreateReg(RegNum);
getLexer().Lex(); // Eat identifier token.
return false;
}
// Try to parse an arm memory expression. It must start with a '[' token.
// TODO Only preindexing and postindexing addressing are started, unindexed
// with option, etc are still to do.
bool ARMAsmParser::ParseMemory(ARMOperand &Op) {
const AsmToken &LBracTok = getLexer().getTok();
assert(LBracTok.is(AsmToken::LBrac) && "Token is not an Left Bracket");
getLexer().Lex(); // Eat left bracket token.
const AsmToken &BaseRegTok = getLexer().getTok();
if (BaseRegTok.isNot(AsmToken::Identifier))
return Error(BaseRegTok.getLoc(), "register expected");
unsigned BaseRegNum = MatchRegisterName(BaseRegTok.getString());
if (BaseRegNum == 0)
return Error(BaseRegTok.getLoc(), "register expected");
getLexer().Lex(); // Eat identifier token.
bool Preindexed = false;
bool Postindexed = false;
bool OffsetIsReg = false;
bool Negative = false;
bool Writeback = false;
// First look for preindexed address forms:
// [Rn, +/-Rm]
// [Rn, #offset]
// [Rn, +/-Rm, shift]
// that is after the "[Rn" we now have see if the next token is a comma.
const AsmToken &Tok = getLexer().getTok();
if (Tok.is(AsmToken::Comma)) {
Preindexed = true;
getLexer().Lex(); // Eat comma token.
const AsmToken &NextTok = getLexer().getTok();
if (NextTok.is(AsmToken::Plus))
getLexer().Lex(); // Eat plus token.
else if (NextTok.is(AsmToken::Minus)) {
Negative = true;
getLexer().Lex(); // Eat minus token
}
// See if there is a register following the "[Rn," we have so far.
const AsmToken &OffsetRegTok = getLexer().getTok();
unsigned OffsetRegNum = MatchRegisterName(OffsetRegTok.getString());
bool OffsetRegShifted = false;
enum ShiftType ShiftType;
const MCExpr *ShiftAmount;
const MCExpr *Offset;
if (OffsetRegNum != 0) {
OffsetIsReg = true;
getLexer().Lex(); // Eat identifier token for the offset register.
// Look for a comma then a shift
const AsmToken &Tok = getLexer().getTok();
if (Tok.is(AsmToken::Comma)) {
getLexer().Lex(); // Eat comma token.
const AsmToken &Tok = getLexer().getTok();
if (ParseShift(&ShiftType, ShiftAmount))
return Error(Tok.getLoc(), "shift expected");
OffsetRegShifted = true;
}
}
else { // "[Rn," we have so far was not followed by "Rm"
// Look for #offset following the "[Rn,"
const AsmToken &HashTok = getLexer().getTok();
if (HashTok.isNot(AsmToken::Hash))
return Error(HashTok.getLoc(), "'#' expected");
getLexer().Lex(); // Eat hash token.
if (getParser().ParseExpression(Offset))
return true;
}
const AsmToken &RBracTok = getLexer().getTok();
if (RBracTok.isNot(AsmToken::RBrac))
return Error(RBracTok.getLoc(), "']' expected");
getLexer().Lex(); // Eat right bracket token.
const AsmToken &ExclaimTok = getLexer().getTok();
if (ExclaimTok.is(AsmToken::Exclaim)) {
Writeback = true;
getLexer().Lex(); // Eat exclaim token
}
Op = ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset, OffsetRegNum,
OffsetRegShifted, ShiftType, ShiftAmount,
Preindexed, Postindexed, Negative, Writeback);
return false;
}
// The "[Rn" we have so far was not followed by a comma.
else if (Tok.is(AsmToken::RBrac)) {
// This is a post indexing addressing forms:
// [Rn], #offset
// [Rn], +/-Rm
// [Rn], +/-Rm, shift
// that is a ']' follows after the "[Rn".
Postindexed = true;
Writeback = true;
getLexer().Lex(); // Eat right bracket token.
const AsmToken &CommaTok = getLexer().getTok();
if (CommaTok.isNot(AsmToken::Comma))
return Error(CommaTok.getLoc(), "',' expected");
getLexer().Lex(); // Eat comma token.
const AsmToken &NextTok = getLexer().getTok();
if (NextTok.is(AsmToken::Plus))
getLexer().Lex(); // Eat plus token.
else if (NextTok.is(AsmToken::Minus)) {
Negative = true;
getLexer().Lex(); // Eat minus token
}
// See if there is a register following the "[Rn]," we have so far.
const AsmToken &OffsetRegTok = getLexer().getTok();
unsigned OffsetRegNum = MatchRegisterName(OffsetRegTok.getString());
bool OffsetRegShifted = false;
enum ShiftType ShiftType;
const MCExpr *ShiftAmount;
const MCExpr *Offset;
if (OffsetRegNum != 0) {
OffsetIsReg = true;
getLexer().Lex(); // Eat identifier token for the offset register.
// Look for a comma then a shift
const AsmToken &Tok = getLexer().getTok();
if (Tok.is(AsmToken::Comma)) {
getLexer().Lex(); // Eat comma token.
const AsmToken &Tok = getLexer().getTok();
if (ParseShift(&ShiftType, ShiftAmount))
return Error(Tok.getLoc(), "shift expected");
OffsetRegShifted = true;
}
}
else { // "[Rn]," we have so far was not followed by "Rm"
// Look for #offset following the "[Rn],"
const AsmToken &HashTok = getLexer().getTok();
if (HashTok.isNot(AsmToken::Hash))
return Error(HashTok.getLoc(), "'#' expected");
getLexer().Lex(); // Eat hash token.
if (getParser().ParseExpression(Offset))
return true;
}
Op = ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset, OffsetRegNum,
OffsetRegShifted, ShiftType, ShiftAmount,
Preindexed, Postindexed, Negative, Writeback);
return false;
}
return true;
}
/// ParseShift as one of these two:
/// ( lsl | lsr | asr | ror ) , # shift_amount
/// rrx
/// and returns true if it parses a shift otherwise it returns false.
bool ARMAsmParser::ParseShift(ShiftType *St, const MCExpr *ShiftAmount) {
const AsmToken &Tok = getLexer().getTok();
if (Tok.isNot(AsmToken::Identifier))
return true;
const StringRef &ShiftName = Tok.getString();
if (ShiftName == "lsl" || ShiftName == "LSL")
*St = Lsl;
else if (ShiftName == "lsr" || ShiftName == "LSR")
*St = Lsr;
else if (ShiftName == "asr" || ShiftName == "ASR")
*St = Asr;
else if (ShiftName == "ror" || ShiftName == "ROR")
*St = Ror;
else if (ShiftName == "rrx" || ShiftName == "RRX")
*St = Rrx;
else
return true;
getLexer().Lex(); // Eat shift type token.
// For all but a Rotate right there must be a '#' and a shift amount
if (*St != Rrx) {
// Look for # following the shift type
const AsmToken &HashTok = getLexer().getTok();
if (HashTok.isNot(AsmToken::Hash))
return Error(HashTok.getLoc(), "'#' expected");
getLexer().Lex(); // Eat hash token.
if (getParser().ParseExpression(ShiftAmount))
return true;
}
return false;
}
// A hack to allow some testing
unsigned ARMAsmParser::MatchRegisterName(const StringRef &Name) {
if (Name == "r1")
return 1;
else if (Name == "r2")
return 2;
else if (Name == "r3")
return 3;
return 0;
}
// A hack to allow some testing
bool ARMAsmParser::MatchInstruction(SmallVectorImpl<ARMOperand> &Operands,
MCInst &Inst) {
struct ARMOperand Op0 = Operands[0];
assert(Op0.Kind == ARMOperand::Token && "First operand not a Token");
const StringRef &Mnemonic = Op0.getToken();
if (Mnemonic == "add" ||
Mnemonic == "ldr")
return false;
return true;
}
// TODO - this is a work in progress
bool ARMAsmParser::ParseOperand(ARMOperand &Op) {
switch (getLexer().getKind()) {
case AsmToken::Identifier:
if (!ParseRegister(Op))
return false;
// TODO parse other operands that start with an identifier
return true;
case AsmToken::LBrac:
if (!ParseMemory(Op))
return false;
default:
return true;
}
}
bool ARMAsmParser::ParseInstruction(const StringRef &Name, MCInst &Inst) {
SmallVector<ARMOperand, 7> Operands;
Operands.push_back(ARMOperand::CreateToken(Name));
SMLoc Loc = getLexer().getTok().getLoc();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
Operands.push_back(ARMOperand());
if (ParseOperand(Operands.back()))
return true;
while (getLexer().is(AsmToken::Comma)) {
getLexer().Lex(); // Eat the comma.
// Parse and remember the operand.
Operands.push_back(ARMOperand());
if (ParseOperand(Operands.back()))
return true;
}
}
if (!MatchInstruction(Operands, Inst))
return false;
Error(Loc, "ARMAsmParser::ParseInstruction only partly implemented");
return true;
}
bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".word")
return ParseDirectiveWord(4, DirectiveID.getLoc());
return true;
}
/// ParseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool ARMAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().ParseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
getLexer().Lex();
}
}
getLexer().Lex();
return false;
}
// Force static initialization.
extern "C" void LLVMInitializeARMAsmParser() {
RegisterAsmParser<ARMAsmParser> X(TheARMTarget);
RegisterAsmParser<ARMAsmParser> Y(TheThumbTarget);
}