llvm-6502/lib/CodeGen/InlineSpiller.cpp

466 lines
16 KiB
C++
Raw Normal View History

//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The inline spiller modifies the machine function directly instead of
// inserting spills and restores in VirtRegMap.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "spiller"
#include "Spiller.h"
#include "SplitKit.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
class InlineSpiller : public Spiller {
MachineFunction &mf_;
LiveIntervals &lis_;
MachineLoopInfo &loops_;
VirtRegMap &vrm_;
MachineFrameInfo &mfi_;
MachineRegisterInfo &mri_;
const TargetInstrInfo &tii_;
const TargetRegisterInfo &tri_;
const BitVector reserved_;
SplitAnalysis splitAnalysis_;
// Variables that are valid during spill(), but used by multiple methods.
LiveInterval *li_;
std::vector<LiveInterval*> *newIntervals_;
const TargetRegisterClass *rc_;
int stackSlot_;
const SmallVectorImpl<LiveInterval*> *spillIs_;
// Values of the current interval that can potentially remat.
SmallPtrSet<VNInfo*, 8> reMattable_;
// Values in reMattable_ that failed to remat at some point.
SmallPtrSet<VNInfo*, 8> usedValues_;
~InlineSpiller() {}
public:
InlineSpiller(MachineFunctionPass &pass,
MachineFunction &mf,
VirtRegMap &vrm)
: mf_(mf),
lis_(pass.getAnalysis<LiveIntervals>()),
loops_(pass.getAnalysis<MachineLoopInfo>()),
vrm_(vrm),
mfi_(*mf.getFrameInfo()),
mri_(mf.getRegInfo()),
tii_(*mf.getTarget().getInstrInfo()),
tri_(*mf.getTarget().getRegisterInfo()),
reserved_(tri_.getReservedRegs(mf_)),
splitAnalysis_(mf, lis_, loops_) {}
void spill(LiveInterval *li,
std::vector<LiveInterval*> &newIntervals,
SmallVectorImpl<LiveInterval*> &spillIs,
SlotIndex *earliestIndex);
private:
bool split();
bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx,
SlotIndex UseIdx);
bool reMaterializeFor(MachineBasicBlock::iterator MI);
void reMaterializeAll();
bool coalesceStackAccess(MachineInstr *MI);
bool foldMemoryOperand(MachineBasicBlock::iterator MI,
const SmallVectorImpl<unsigned> &Ops);
void insertReload(LiveInterval &NewLI, MachineBasicBlock::iterator MI);
void insertSpill(LiveInterval &NewLI, MachineBasicBlock::iterator MI);
};
}
namespace llvm {
Spiller *createInlineSpiller(MachineFunctionPass &pass,
MachineFunction &mf,
VirtRegMap &vrm) {
return new InlineSpiller(pass, mf, vrm);
}
}
/// split - try splitting the current interval into pieces that may allocate
/// separately. Return true if successful.
bool InlineSpiller::split() {
// FIXME: Add intra-MBB splitting.
if (lis_.intervalIsInOneMBB(*li_))
return false;
splitAnalysis_.analyze(li_);
if (const MachineLoop *loop = splitAnalysis_.getBestSplitLoop()) {
SplitEditor(splitAnalysis_, lis_, vrm_, *newIntervals_)
.splitAroundLoop(loop);
return true;
}
return false;
}
/// allUsesAvailableAt - Return true if all registers used by OrigMI at
/// OrigIdx are also available with the same value at UseIdx.
bool InlineSpiller::allUsesAvailableAt(const MachineInstr *OrigMI,
SlotIndex OrigIdx,
SlotIndex UseIdx) {
OrigIdx = OrigIdx.getUseIndex();
UseIdx = UseIdx.getUseIndex();
for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = OrigMI->getOperand(i);
if (!MO.isReg() || !MO.getReg() || MO.getReg() == li_->reg)
continue;
// Reserved registers are OK.
if (MO.isUndef() || !lis_.hasInterval(MO.getReg()))
continue;
// We don't want to move any defs.
if (MO.isDef())
return false;
// We cannot depend on virtual registers in spillIs_. They will be spilled.
for (unsigned si = 0, se = spillIs_->size(); si != se; ++si)
if ((*spillIs_)[si]->reg == MO.getReg())
return false;
LiveInterval &LI = lis_.getInterval(MO.getReg());
const VNInfo *OVNI = LI.getVNInfoAt(OrigIdx);
if (!OVNI)
continue;
if (OVNI != LI.getVNInfoAt(UseIdx))
return false;
}
return true;
}
/// reMaterializeFor - Attempt to rematerialize li_->reg before MI instead of
/// reloading it.
bool InlineSpiller::reMaterializeFor(MachineBasicBlock::iterator MI) {
SlotIndex UseIdx = lis_.getInstructionIndex(MI).getUseIndex();
VNInfo *OrigVNI = li_->getVNInfoAt(UseIdx);
if (!OrigVNI) {
DEBUG(dbgs() << "\tadding <undef> flags: ");
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isUse() && MO.getReg() == li_->reg)
MO.setIsUndef();
}
DEBUG(dbgs() << UseIdx << '\t' << *MI);
return true;
}
if (!reMattable_.count(OrigVNI)) {
DEBUG(dbgs() << "\tusing non-remat valno " << OrigVNI->id << ": "
<< UseIdx << '\t' << *MI);
return false;
}
MachineInstr *OrigMI = lis_.getInstructionFromIndex(OrigVNI->def);
if (!allUsesAvailableAt(OrigMI, OrigVNI->def, UseIdx)) {
usedValues_.insert(OrigVNI);
DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
return false;
}
// If the instruction also writes li_->reg, it had better not require the same
// register for uses and defs.
bool Reads, Writes;
SmallVector<unsigned, 8> Ops;
tie(Reads, Writes) = MI->readsWritesVirtualRegister(li_->reg, &Ops);
if (Writes) {
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(Ops[i]);
if (MO.isUse() ? MI->isRegTiedToDefOperand(Ops[i]) : MO.getSubReg()) {
usedValues_.insert(OrigVNI);
DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
return false;
}
}
}
// Alocate a new register for the remat.
unsigned NewVReg = mri_.createVirtualRegister(rc_);
vrm_.grow();
LiveInterval &NewLI = lis_.getOrCreateInterval(NewVReg);
NewLI.markNotSpillable();
newIntervals_->push_back(&NewLI);
// Finally we can rematerialize OrigMI before MI.
MachineBasicBlock &MBB = *MI->getParent();
tii_.reMaterialize(MBB, MI, NewLI.reg, 0, OrigMI, tri_);
MachineBasicBlock::iterator RematMI = MI;
SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(--RematMI).getDefIndex();
DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' << *RematMI);
// Replace operands
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(Ops[i]);
if (MO.isReg() && MO.isUse() && MO.getReg() == li_->reg) {
MO.setReg(NewVReg);
MO.setIsKill();
}
}
DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI);
VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, true,
lis_.getVNInfoAllocator());
NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI));
DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
return true;
}
/// reMaterializeAll - Try to rematerialize as many uses of li_ as possible,
/// and trim the live ranges after.
void InlineSpiller::reMaterializeAll() {
// Do a quick scan of the interval values to find if any are remattable.
reMattable_.clear();
usedValues_.clear();
for (LiveInterval::const_vni_iterator I = li_->vni_begin(),
E = li_->vni_end(); I != E; ++I) {
VNInfo *VNI = *I;
if (VNI->isUnused() || !VNI->isDefAccurate())
continue;
MachineInstr *DefMI = lis_.getInstructionFromIndex(VNI->def);
if (!DefMI || !tii_.isTriviallyReMaterializable(DefMI))
continue;
reMattable_.insert(VNI);
}
// Often, no defs are remattable.
if (reMattable_.empty())
return;
// Try to remat before all uses of li_->reg.
bool anyRemat = false;
for (MachineRegisterInfo::use_nodbg_iterator
RI = mri_.use_nodbg_begin(li_->reg);
MachineInstr *MI = RI.skipInstruction();)
anyRemat |= reMaterializeFor(MI);
if (!anyRemat)
return;
// Remove any values that were completely rematted.
bool anyRemoved = false;
for (SmallPtrSet<VNInfo*, 8>::iterator I = reMattable_.begin(),
E = reMattable_.end(); I != E; ++I) {
VNInfo *VNI = *I;
if (VNI->hasPHIKill() || usedValues_.count(VNI))
continue;
MachineInstr *DefMI = lis_.getInstructionFromIndex(VNI->def);
DEBUG(dbgs() << "\tremoving dead def: " << VNI->def << '\t' << *DefMI);
lis_.RemoveMachineInstrFromMaps(DefMI);
vrm_.RemoveMachineInstrFromMaps(DefMI);
DefMI->eraseFromParent();
li_->removeValNo(VNI);
anyRemoved = true;
}
if (!anyRemoved)
return;
// Removing values may cause debug uses where li_ is not live.
for (MachineRegisterInfo::use_iterator RI = mri_.use_begin(li_->reg);
MachineInstr *MI = RI.skipInstruction();) {
if (!MI->isDebugValue())
continue;
// Try to preserve the debug value if li_ is live immediately after it.
MachineBasicBlock::iterator NextMI = MI;
++NextMI;
if (NextMI != MI->getParent()->end() && !lis_.isNotInMIMap(NextMI)) {
SlotIndex NearIdx = lis_.getInstructionIndex(NextMI);
if (li_->liveAt(NearIdx))
continue;
}
DEBUG(dbgs() << "Removing debug info due to remat:" << "\t" << *MI);
MI->eraseFromParent();
}
}
/// If MI is a load or store of stackSlot_, it can be removed.
bool InlineSpiller::coalesceStackAccess(MachineInstr *MI) {
int FI = 0;
unsigned reg;
if (!(reg = tii_.isLoadFromStackSlot(MI, FI)) &&
!(reg = tii_.isStoreToStackSlot(MI, FI)))
return false;
// We have a stack access. Is it the right register and slot?
if (reg != li_->reg || FI != stackSlot_)
return false;
DEBUG(dbgs() << "Coalescing stack access: " << *MI);
lis_.RemoveMachineInstrFromMaps(MI);
MI->eraseFromParent();
return true;
}
/// foldMemoryOperand - Try folding stack slot references in Ops into MI.
/// Return true on success, and MI will be erased.
bool InlineSpiller::foldMemoryOperand(MachineBasicBlock::iterator MI,
const SmallVectorImpl<unsigned> &Ops) {
// TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
// operands.
SmallVector<unsigned, 8> FoldOps;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
unsigned Idx = Ops[i];
MachineOperand &MO = MI->getOperand(Idx);
if (MO.isImplicit())
continue;
// FIXME: Teach targets to deal with subregs.
if (MO.getSubReg())
return false;
// Tied use operands should not be passed to foldMemoryOperand.
if (!MI->isRegTiedToDefOperand(Idx))
FoldOps.push_back(Idx);
}
MachineInstr *FoldMI = tii_.foldMemoryOperand(MI, FoldOps, stackSlot_);
if (!FoldMI)
return false;
lis_.ReplaceMachineInstrInMaps(MI, FoldMI);
vrm_.addSpillSlotUse(stackSlot_, FoldMI);
MI->eraseFromParent();
DEBUG(dbgs() << "\tfolded: " << *FoldMI);
return true;
}
/// insertReload - Insert a reload of NewLI.reg before MI.
void InlineSpiller::insertReload(LiveInterval &NewLI,
MachineBasicBlock::iterator MI) {
MachineBasicBlock &MBB = *MI->getParent();
SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex();
tii_.loadRegFromStackSlot(MBB, MI, NewLI.reg, stackSlot_, rc_, &tri_);
--MI; // Point to load instruction.
SlotIndex LoadIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
vrm_.addSpillSlotUse(stackSlot_, MI);
DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI);
VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0, true,
lis_.getVNInfoAllocator());
NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
}
/// insertSpill - Insert a spill of NewLI.reg after MI.
void InlineSpiller::insertSpill(LiveInterval &NewLI,
MachineBasicBlock::iterator MI) {
MachineBasicBlock &MBB = *MI->getParent();
SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex();
tii_.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, stackSlot_, rc_, &tri_);
--MI; // Point to store instruction.
SlotIndex StoreIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
vrm_.addSpillSlotUse(stackSlot_, MI);
DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, true,
lis_.getVNInfoAllocator());
NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
}
void InlineSpiller::spill(LiveInterval *li,
std::vector<LiveInterval*> &newIntervals,
SmallVectorImpl<LiveInterval*> &spillIs,
SlotIndex *earliestIndex) {
DEBUG(dbgs() << "Inline spilling " << *li << "\n");
assert(li->isSpillable() && "Attempting to spill already spilled value.");
assert(!li->isStackSlot() && "Trying to spill a stack slot.");
li_ = li;
newIntervals_ = &newIntervals;
rc_ = mri_.getRegClass(li->reg);
spillIs_ = &spillIs;
if (split())
return;
reMaterializeAll();
// Remat may handle everything.
if (li_->empty())
return;
stackSlot_ = vrm_.getStackSlot(li->reg);
if (stackSlot_ == VirtRegMap::NO_STACK_SLOT)
stackSlot_ = vrm_.assignVirt2StackSlot(li->reg);
// Iterate over instructions using register.
for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(li->reg);
MachineInstr *MI = RI.skipInstruction();) {
// Debug values are not allowed to affect codegen.
if (MI->isDebugValue()) {
// Modify DBG_VALUE now that the value is in a spill slot.
uint64_t Offset = MI->getOperand(1).getImm();
const MDNode *MDPtr = MI->getOperand(2).getMetadata();
DebugLoc DL = MI->getDebugLoc();
if (MachineInstr *NewDV = tii_.emitFrameIndexDebugValue(mf_, stackSlot_,
Offset, MDPtr, DL)) {
DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
MachineBasicBlock *MBB = MI->getParent();
MBB->insert(MBB->erase(MI), NewDV);
} else {
DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
MI->eraseFromParent();
}
continue;
}
// Stack slot accesses may coalesce away.
if (coalesceStackAccess(MI))
continue;
// Analyze instruction.
bool Reads, Writes;
SmallVector<unsigned, 8> Ops;
tie(Reads, Writes) = MI->readsWritesVirtualRegister(li->reg, &Ops);
// Attempt to fold memory ops.
if (foldMemoryOperand(MI, Ops))
continue;
// Allocate interval around instruction.
// FIXME: Infer regclass from instruction alone.
unsigned NewVReg = mri_.createVirtualRegister(rc_);
vrm_.grow();
LiveInterval &NewLI = lis_.getOrCreateInterval(NewVReg);
NewLI.markNotSpillable();
if (Reads)
insertReload(NewLI, MI);
// Rewrite instruction operands.
bool hasLiveDef = false;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(Ops[i]);
MO.setReg(NewVReg);
if (MO.isUse()) {
if (!MI->isRegTiedToDefOperand(Ops[i]))
MO.setIsKill();
} else {
if (!MO.isDead())
hasLiveDef = true;
}
}
// FIXME: Use a second vreg if instruction has no tied ops.
if (Writes && hasLiveDef)
insertSpill(NewLI, MI);
DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
newIntervals.push_back(&NewLI);
}
}