2006-01-21 02:32:06 +00:00
|
|
|
//===-- ScheduleDAGSimple.cpp - Implement a trivial DAG scheduler ---------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file was developed by James M. Laskey and is distributed under the
|
|
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This implements a simple two pass scheduler. The first pass attempts to push
|
|
|
|
// backward any lengthy instructions and critical paths. The second pass packs
|
|
|
|
// instructions into semi-optimal time slots.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "sched"
|
|
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
2006-01-24 04:43:17 +00:00
|
|
|
#include <algorithm>
|
2006-01-21 02:32:06 +00:00
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
///
|
|
|
|
/// BitsIterator - Provides iteration through individual bits in a bit vector.
|
|
|
|
///
|
|
|
|
template<class T>
|
|
|
|
class BitsIterator {
|
|
|
|
private:
|
|
|
|
T Bits; // Bits left to iterate through
|
|
|
|
|
|
|
|
public:
|
|
|
|
/// Ctor.
|
|
|
|
BitsIterator(T Initial) : Bits(Initial) {}
|
|
|
|
|
|
|
|
/// Next - Returns the next bit set or zero if exhausted.
|
|
|
|
inline T Next() {
|
|
|
|
// Get the rightmost bit set
|
|
|
|
T Result = Bits & -Bits;
|
|
|
|
// Remove from rest
|
|
|
|
Bits &= ~Result;
|
|
|
|
// Return single bit or zero
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
///
|
|
|
|
/// ResourceTally - Manages the use of resources over time intervals. Each
|
|
|
|
/// item (slot) in the tally vector represents the resources used at a given
|
|
|
|
/// moment. A bit set to 1 indicates that a resource is in use, otherwise
|
|
|
|
/// available. An assumption is made that the tally is large enough to schedule
|
|
|
|
/// all current instructions (asserts otherwise.)
|
|
|
|
///
|
|
|
|
template<class T>
|
|
|
|
class ResourceTally {
|
|
|
|
private:
|
|
|
|
std::vector<T> Tally; // Resources used per slot
|
|
|
|
typedef typename std::vector<T>::iterator Iter;
|
|
|
|
// Tally iterator
|
|
|
|
|
|
|
|
/// SlotsAvailable - Returns true if all units are available.
|
|
|
|
///
|
|
|
|
bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet,
|
|
|
|
unsigned &Resource) {
|
|
|
|
assert(N && "Must check availability with N != 0");
|
|
|
|
// Determine end of interval
|
|
|
|
Iter End = Begin + N;
|
|
|
|
assert(End <= Tally.end() && "Tally is not large enough for schedule");
|
|
|
|
|
|
|
|
// Iterate thru each resource
|
|
|
|
BitsIterator<T> Resources(ResourceSet & ~*Begin);
|
|
|
|
while (unsigned Res = Resources.Next()) {
|
|
|
|
// Check if resource is available for next N slots
|
|
|
|
Iter Interval = End;
|
|
|
|
do {
|
|
|
|
Interval--;
|
|
|
|
if (*Interval & Res) break;
|
|
|
|
} while (Interval != Begin);
|
|
|
|
|
|
|
|
// If available for N
|
|
|
|
if (Interval == Begin) {
|
|
|
|
// Success
|
|
|
|
Resource = Res;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// No luck
|
|
|
|
Resource = 0;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// RetrySlot - Finds a good candidate slot to retry search.
|
|
|
|
Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) {
|
|
|
|
assert(N && "Must check availability with N != 0");
|
|
|
|
// Determine end of interval
|
|
|
|
Iter End = Begin + N;
|
|
|
|
assert(End <= Tally.end() && "Tally is not large enough for schedule");
|
|
|
|
|
|
|
|
while (Begin != End--) {
|
|
|
|
// Clear units in use
|
|
|
|
ResourceSet &= ~*End;
|
|
|
|
// If no units left then we should go no further
|
|
|
|
if (!ResourceSet) return End + 1;
|
|
|
|
}
|
|
|
|
// Made it all the way through
|
|
|
|
return Begin;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// FindAndReserveStages - Return true if the stages can be completed. If
|
|
|
|
/// so mark as busy.
|
|
|
|
bool FindAndReserveStages(Iter Begin,
|
|
|
|
InstrStage *Stage, InstrStage *StageEnd) {
|
|
|
|
// If at last stage then we're done
|
|
|
|
if (Stage == StageEnd) return true;
|
|
|
|
// Get number of cycles for current stage
|
|
|
|
unsigned N = Stage->Cycles;
|
|
|
|
// Check to see if N slots are available, if not fail
|
|
|
|
unsigned Resource;
|
|
|
|
if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false;
|
|
|
|
// Check to see if remaining stages are available, if not fail
|
|
|
|
if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false;
|
|
|
|
// Reserve resource
|
|
|
|
Reserve(Begin, N, Resource);
|
|
|
|
// Success
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Reserve - Mark busy (set) the specified N slots.
|
|
|
|
void Reserve(Iter Begin, unsigned N, unsigned Resource) {
|
|
|
|
// Determine end of interval
|
|
|
|
Iter End = Begin + N;
|
|
|
|
assert(End <= Tally.end() && "Tally is not large enough for schedule");
|
|
|
|
|
|
|
|
// Set resource bit in each slot
|
|
|
|
for (; Begin < End; Begin++)
|
|
|
|
*Begin |= Resource;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// FindSlots - Starting from Begin, locate consecutive slots where all stages
|
|
|
|
/// can be completed. Returns the address of first slot.
|
|
|
|
Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) {
|
|
|
|
// Track position
|
|
|
|
Iter Cursor = Begin;
|
|
|
|
|
|
|
|
// Try all possible slots forward
|
|
|
|
while (true) {
|
|
|
|
// Try at cursor, if successful return position.
|
|
|
|
if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor;
|
|
|
|
// Locate a better position
|
|
|
|
Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
/// Initialize - Resize and zero the tally to the specified number of time
|
|
|
|
/// slots.
|
|
|
|
inline void Initialize(unsigned N) {
|
|
|
|
Tally.assign(N, 0); // Initialize tally to all zeros.
|
|
|
|
}
|
|
|
|
|
|
|
|
// FindAndReserve - Locate an ideal slot for the specified stages and mark
|
|
|
|
// as busy.
|
|
|
|
unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin,
|
|
|
|
InstrStage *StageEnd) {
|
|
|
|
// Where to begin
|
|
|
|
Iter Begin = Tally.begin() + Slot;
|
|
|
|
// Find a free slot
|
|
|
|
Iter Where = FindSlots(Begin, StageBegin, StageEnd);
|
|
|
|
// Distance is slot number
|
|
|
|
unsigned Final = Where - Tally.begin();
|
|
|
|
return Final;
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
///
|
|
|
|
/// ScheduleDAGSimple - Simple two pass scheduler.
|
|
|
|
///
|
|
|
|
class ScheduleDAGSimple : public ScheduleDAG {
|
|
|
|
private:
|
|
|
|
ResourceTally<unsigned> Tally; // Resource usage tally
|
|
|
|
unsigned NSlots; // Total latency
|
|
|
|
static const unsigned NotFound = ~0U; // Search marker
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
// Ctor.
|
2006-01-23 07:01:07 +00:00
|
|
|
ScheduleDAGSimple(SchedHeuristics hstc, SelectionDAG &dag,
|
|
|
|
MachineBasicBlock *bb, const TargetMachine &tm)
|
|
|
|
: ScheduleDAG(hstc, dag, bb, tm), Tally(), NSlots(0) {
|
2006-01-21 02:32:06 +00:00
|
|
|
assert(&TII && "Target doesn't provide instr info?");
|
|
|
|
assert(&MRI && "Target doesn't provide register info?");
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual ~ScheduleDAGSimple() {};
|
|
|
|
|
2006-01-23 08:25:34 +00:00
|
|
|
void Schedule();
|
|
|
|
|
2006-01-21 02:32:06 +00:00
|
|
|
private:
|
|
|
|
static bool isDefiner(NodeInfo *A, NodeInfo *B);
|
|
|
|
void IncludeNode(NodeInfo *NI);
|
|
|
|
void VisitAll();
|
|
|
|
void GatherSchedulingInfo();
|
|
|
|
void FakeGroupDominators();
|
|
|
|
bool isStrongDependency(NodeInfo *A, NodeInfo *B);
|
|
|
|
bool isWeakDependency(NodeInfo *A, NodeInfo *B);
|
|
|
|
void ScheduleBackward();
|
|
|
|
void ScheduleForward();
|
|
|
|
};
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Special case itineraries.
|
|
|
|
///
|
|
|
|
enum {
|
|
|
|
CallLatency = 40, // To push calls back in time
|
|
|
|
|
|
|
|
RSInteger = 0xC0000000, // Two integer units
|
|
|
|
RSFloat = 0x30000000, // Two float units
|
|
|
|
RSLoadStore = 0x0C000000, // Two load store units
|
|
|
|
RSBranch = 0x02000000 // One branch unit
|
|
|
|
};
|
|
|
|
static InstrStage CallStage = { CallLatency, RSBranch };
|
|
|
|
static InstrStage LoadStage = { 5, RSLoadStore };
|
|
|
|
static InstrStage StoreStage = { 2, RSLoadStore };
|
|
|
|
static InstrStage IntStage = { 2, RSInteger };
|
|
|
|
static InstrStage FloatStage = { 3, RSFloat };
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isDefiner - Return true if node A is a definer for B.
|
|
|
|
///
|
|
|
|
bool ScheduleDAGSimple::isDefiner(NodeInfo *A, NodeInfo *B) {
|
|
|
|
// While there are A nodes
|
|
|
|
NodeGroupIterator NII(A);
|
|
|
|
while (NodeInfo *NI = NII.next()) {
|
|
|
|
// Extract node
|
|
|
|
SDNode *Node = NI->Node;
|
|
|
|
// While there operands in nodes of B
|
|
|
|
NodeGroupOpIterator NGOI(B);
|
|
|
|
while (!NGOI.isEnd()) {
|
|
|
|
SDOperand Op = NGOI.next();
|
|
|
|
// If node from A defines a node in B
|
|
|
|
if (Node == Op.Val) return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// IncludeNode - Add node to NodeInfo vector.
|
|
|
|
///
|
|
|
|
void ScheduleDAGSimple::IncludeNode(NodeInfo *NI) {
|
|
|
|
// Get node
|
|
|
|
SDNode *Node = NI->Node;
|
|
|
|
// Ignore entry node
|
|
|
|
if (Node->getOpcode() == ISD::EntryToken) return;
|
|
|
|
// Check current count for node
|
|
|
|
int Count = NI->getPending();
|
|
|
|
// If the node is already in list
|
|
|
|
if (Count < 0) return;
|
|
|
|
// Decrement count to indicate a visit
|
|
|
|
Count--;
|
|
|
|
// If count has gone to zero then add node to list
|
|
|
|
if (!Count) {
|
|
|
|
// Add node
|
|
|
|
if (NI->isInGroup()) {
|
|
|
|
Ordering.push_back(NI->Group->getDominator());
|
|
|
|
} else {
|
|
|
|
Ordering.push_back(NI);
|
|
|
|
}
|
|
|
|
// indicate node has been added
|
|
|
|
Count--;
|
|
|
|
}
|
|
|
|
// Mark as visited with new count
|
|
|
|
NI->setPending(Count);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// GatherSchedulingInfo - Get latency and resource information about each node.
|
|
|
|
///
|
|
|
|
void ScheduleDAGSimple::GatherSchedulingInfo() {
|
|
|
|
// Get instruction itineraries for the target
|
|
|
|
const InstrItineraryData InstrItins = TM.getInstrItineraryData();
|
|
|
|
|
|
|
|
// For each node
|
|
|
|
for (unsigned i = 0, N = NodeCount; i < N; i++) {
|
|
|
|
// Get node info
|
|
|
|
NodeInfo* NI = &Info[i];
|
|
|
|
SDNode *Node = NI->Node;
|
|
|
|
|
|
|
|
// If there are itineraries and it is a machine instruction
|
2006-01-23 07:01:07 +00:00
|
|
|
if (InstrItins.isEmpty() || Heuristic == simpleNoItinScheduling) {
|
2006-01-21 02:32:06 +00:00
|
|
|
// If machine opcode
|
|
|
|
if (Node->isTargetOpcode()) {
|
|
|
|
// Get return type to guess which processing unit
|
|
|
|
MVT::ValueType VT = Node->getValueType(0);
|
|
|
|
// Get machine opcode
|
|
|
|
MachineOpCode TOpc = Node->getTargetOpcode();
|
|
|
|
NI->IsCall = TII->isCall(TOpc);
|
|
|
|
NI->IsLoad = TII->isLoad(TOpc);
|
|
|
|
NI->IsStore = TII->isStore(TOpc);
|
|
|
|
|
|
|
|
if (TII->isLoad(TOpc)) NI->StageBegin = &LoadStage;
|
|
|
|
else if (TII->isStore(TOpc)) NI->StageBegin = &StoreStage;
|
|
|
|
else if (MVT::isInteger(VT)) NI->StageBegin = &IntStage;
|
|
|
|
else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage;
|
|
|
|
if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1;
|
|
|
|
}
|
|
|
|
} else if (Node->isTargetOpcode()) {
|
|
|
|
// get machine opcode
|
|
|
|
MachineOpCode TOpc = Node->getTargetOpcode();
|
|
|
|
// Check to see if it is a call
|
|
|
|
NI->IsCall = TII->isCall(TOpc);
|
|
|
|
// Get itinerary stages for instruction
|
|
|
|
unsigned II = TII->getSchedClass(TOpc);
|
|
|
|
NI->StageBegin = InstrItins.begin(II);
|
|
|
|
NI->StageEnd = InstrItins.end(II);
|
|
|
|
}
|
|
|
|
|
|
|
|
// One slot for the instruction itself
|
|
|
|
NI->Latency = 1;
|
|
|
|
|
|
|
|
// Add long latency for a call to push it back in time
|
|
|
|
if (NI->IsCall) NI->Latency += CallLatency;
|
|
|
|
|
|
|
|
// Sum up all the latencies
|
|
|
|
for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd;
|
|
|
|
Stage != E; Stage++) {
|
|
|
|
NI->Latency += Stage->Cycles;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sum up all the latencies for max tally size
|
|
|
|
NSlots += NI->Latency;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Unify metrics if in a group
|
|
|
|
if (HasGroups) {
|
|
|
|
for (unsigned i = 0, N = NodeCount; i < N; i++) {
|
|
|
|
NodeInfo* NI = &Info[i];
|
|
|
|
|
|
|
|
if (NI->isInGroup()) {
|
|
|
|
NodeGroup *Group = NI->Group;
|
|
|
|
|
|
|
|
if (!Group->getDominator()) {
|
|
|
|
NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
|
|
|
|
NodeInfo *Dominator = *NGI;
|
|
|
|
unsigned Latency = 0;
|
|
|
|
|
|
|
|
for (NGI++; NGI != NGE; NGI++) {
|
|
|
|
NodeInfo* NGNI = *NGI;
|
|
|
|
Latency += NGNI->Latency;
|
|
|
|
if (Dominator->Latency < NGNI->Latency) Dominator = NGNI;
|
|
|
|
}
|
|
|
|
|
|
|
|
Dominator->Latency = Latency;
|
|
|
|
Group->setDominator(Dominator);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2006-01-23 07:01:07 +00:00
|
|
|
/// VisitAll - Visit each node breadth-wise to produce an initial ordering.
|
|
|
|
/// Note that the ordering in the Nodes vector is reversed.
|
|
|
|
void ScheduleDAGSimple::VisitAll() {
|
|
|
|
// Add first element to list
|
|
|
|
NodeInfo *NI = getNI(DAG.getRoot().Val);
|
|
|
|
if (NI->isInGroup()) {
|
|
|
|
Ordering.push_back(NI->Group->getDominator());
|
|
|
|
} else {
|
|
|
|
Ordering.push_back(NI);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Iterate through all nodes that have been added
|
|
|
|
for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
|
|
|
|
// Visit all operands
|
|
|
|
NodeGroupOpIterator NGI(Ordering[i]);
|
|
|
|
while (!NGI.isEnd()) {
|
|
|
|
// Get next operand
|
|
|
|
SDOperand Op = NGI.next();
|
|
|
|
// Get node
|
|
|
|
SDNode *Node = Op.Val;
|
|
|
|
// Ignore passive nodes
|
|
|
|
if (isPassiveNode(Node)) continue;
|
|
|
|
// Check out node
|
|
|
|
IncludeNode(getNI(Node));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add entry node last (IncludeNode filters entry nodes)
|
|
|
|
if (DAG.getEntryNode().Val != DAG.getRoot().Val)
|
|
|
|
Ordering.push_back(getNI(DAG.getEntryNode().Val));
|
|
|
|
|
|
|
|
// Reverse the order
|
|
|
|
std::reverse(Ordering.begin(), Ordering.end());
|
|
|
|
}
|
|
|
|
|
2006-01-21 02:32:06 +00:00
|
|
|
/// FakeGroupDominators - Set dominators for non-scheduling.
|
|
|
|
///
|
|
|
|
void ScheduleDAGSimple::FakeGroupDominators() {
|
|
|
|
for (unsigned i = 0, N = NodeCount; i < N; i++) {
|
|
|
|
NodeInfo* NI = &Info[i];
|
|
|
|
|
|
|
|
if (NI->isInGroup()) {
|
|
|
|
NodeGroup *Group = NI->Group;
|
|
|
|
|
|
|
|
if (!Group->getDominator()) {
|
|
|
|
Group->setDominator(NI);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// isStrongDependency - Return true if node A has results used by node B.
|
|
|
|
/// I.E., B must wait for latency of A.
|
|
|
|
bool ScheduleDAGSimple::isStrongDependency(NodeInfo *A, NodeInfo *B) {
|
|
|
|
// If A defines for B then it's a strong dependency or
|
|
|
|
// if a load follows a store (may be dependent but why take a chance.)
|
|
|
|
return isDefiner(A, B) || (A->IsStore && B->IsLoad);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// isWeakDependency Return true if node A produces a result that will
|
|
|
|
/// conflict with operands of B. It is assumed that we have called
|
|
|
|
/// isStrongDependency prior.
|
|
|
|
bool ScheduleDAGSimple::isWeakDependency(NodeInfo *A, NodeInfo *B) {
|
|
|
|
// TODO check for conflicting real registers and aliases
|
|
|
|
#if 0 // FIXME - Since we are in SSA form and not checking register aliasing
|
|
|
|
return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
|
|
|
|
#else
|
|
|
|
return A->Node->getOpcode() == ISD::EntryToken;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/// ScheduleBackward - Schedule instructions so that any long latency
|
|
|
|
/// instructions and the critical path get pushed back in time. Time is run in
|
|
|
|
/// reverse to allow code reuse of the Tally and eliminate the overhead of
|
|
|
|
/// biasing every slot indices against NSlots.
|
|
|
|
void ScheduleDAGSimple::ScheduleBackward() {
|
|
|
|
// Size and clear the resource tally
|
|
|
|
Tally.Initialize(NSlots);
|
|
|
|
// Get number of nodes to schedule
|
|
|
|
unsigned N = Ordering.size();
|
|
|
|
|
|
|
|
// For each node being scheduled
|
|
|
|
for (unsigned i = N; 0 < i--;) {
|
|
|
|
NodeInfo *NI = Ordering[i];
|
|
|
|
// Track insertion
|
|
|
|
unsigned Slot = NotFound;
|
|
|
|
|
|
|
|
// Compare against those previously scheduled nodes
|
|
|
|
unsigned j = i + 1;
|
|
|
|
for (; j < N; j++) {
|
|
|
|
// Get following instruction
|
|
|
|
NodeInfo *Other = Ordering[j];
|
|
|
|
|
|
|
|
// Check dependency against previously inserted nodes
|
|
|
|
if (isStrongDependency(NI, Other)) {
|
|
|
|
Slot = Other->Slot + Other->Latency;
|
|
|
|
break;
|
|
|
|
} else if (isWeakDependency(NI, Other)) {
|
|
|
|
Slot = Other->Slot;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If independent of others (or first entry)
|
|
|
|
if (Slot == NotFound) Slot = 0;
|
|
|
|
|
|
|
|
#if 0 // FIXME - measure later
|
|
|
|
// Find a slot where the needed resources are available
|
|
|
|
if (NI->StageBegin != NI->StageEnd)
|
|
|
|
Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Set node slot
|
|
|
|
NI->Slot = Slot;
|
|
|
|
|
|
|
|
// Insert sort based on slot
|
|
|
|
j = i + 1;
|
|
|
|
for (; j < N; j++) {
|
|
|
|
// Get following instruction
|
|
|
|
NodeInfo *Other = Ordering[j];
|
|
|
|
// Should we look further (remember slots are in reverse time)
|
|
|
|
if (Slot >= Other->Slot) break;
|
|
|
|
// Shuffle other into ordering
|
|
|
|
Ordering[j - 1] = Other;
|
|
|
|
}
|
|
|
|
// Insert node in proper slot
|
|
|
|
if (j != i + 1) Ordering[j - 1] = NI;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// ScheduleForward - Schedule instructions to maximize packing.
|
|
|
|
///
|
|
|
|
void ScheduleDAGSimple::ScheduleForward() {
|
|
|
|
// Size and clear the resource tally
|
|
|
|
Tally.Initialize(NSlots);
|
|
|
|
// Get number of nodes to schedule
|
|
|
|
unsigned N = Ordering.size();
|
|
|
|
|
|
|
|
// For each node being scheduled
|
|
|
|
for (unsigned i = 0; i < N; i++) {
|
|
|
|
NodeInfo *NI = Ordering[i];
|
|
|
|
// Track insertion
|
|
|
|
unsigned Slot = NotFound;
|
|
|
|
|
|
|
|
// Compare against those previously scheduled nodes
|
|
|
|
unsigned j = i;
|
|
|
|
for (; 0 < j--;) {
|
|
|
|
// Get following instruction
|
|
|
|
NodeInfo *Other = Ordering[j];
|
|
|
|
|
|
|
|
// Check dependency against previously inserted nodes
|
|
|
|
if (isStrongDependency(Other, NI)) {
|
|
|
|
Slot = Other->Slot + Other->Latency;
|
|
|
|
break;
|
|
|
|
} else if (Other->IsCall || isWeakDependency(Other, NI)) {
|
|
|
|
Slot = Other->Slot;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If independent of others (or first entry)
|
|
|
|
if (Slot == NotFound) Slot = 0;
|
|
|
|
|
|
|
|
// Find a slot where the needed resources are available
|
|
|
|
if (NI->StageBegin != NI->StageEnd)
|
|
|
|
Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
|
|
|
|
|
|
|
|
// Set node slot
|
|
|
|
NI->Slot = Slot;
|
|
|
|
|
|
|
|
// Insert sort based on slot
|
|
|
|
j = i;
|
|
|
|
for (; 0 < j--;) {
|
|
|
|
// Get prior instruction
|
|
|
|
NodeInfo *Other = Ordering[j];
|
|
|
|
// Should we look further
|
|
|
|
if (Slot >= Other->Slot) break;
|
|
|
|
// Shuffle other into ordering
|
|
|
|
Ordering[j + 1] = Other;
|
|
|
|
}
|
|
|
|
// Insert node in proper slot
|
|
|
|
if (j != i) Ordering[j + 1] = NI;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Schedule - Order nodes according to selected style.
|
|
|
|
///
|
|
|
|
void ScheduleDAGSimple::Schedule() {
|
|
|
|
// Test to see if scheduling should occur
|
2006-01-23 07:01:07 +00:00
|
|
|
bool ShouldSchedule = NodeCount > 3 && Heuristic != noScheduling;
|
2006-01-21 02:32:06 +00:00
|
|
|
// Don't waste time if is only entry and return
|
|
|
|
if (ShouldSchedule) {
|
|
|
|
// Get latency and resource requirements
|
|
|
|
GatherSchedulingInfo();
|
|
|
|
} else if (HasGroups) {
|
|
|
|
// Make sure all the groups have dominators
|
|
|
|
FakeGroupDominators();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Breadth first walk of DAG
|
|
|
|
VisitAll();
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
static unsigned Count = 0;
|
|
|
|
Count++;
|
|
|
|
for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
|
|
|
|
NodeInfo *NI = Ordering[i];
|
|
|
|
NI->Preorder = i;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Don't waste time if is only entry and return
|
|
|
|
if (ShouldSchedule) {
|
|
|
|
// Push back long instructions and critical path
|
|
|
|
ScheduleBackward();
|
|
|
|
|
|
|
|
// Pack instructions to maximize resource utilization
|
|
|
|
ScheduleForward();
|
|
|
|
}
|
|
|
|
|
|
|
|
DEBUG(printChanges(Count));
|
|
|
|
|
|
|
|
// Emit in scheduled order
|
|
|
|
EmitAll();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// createSimpleDAGScheduler - This creates a simple two pass instruction
|
|
|
|
/// scheduler.
|
2006-01-23 07:01:07 +00:00
|
|
|
llvm::ScheduleDAG* llvm::createSimpleDAGScheduler(SchedHeuristics Heuristic,
|
|
|
|
SelectionDAG &DAG,
|
2006-01-21 02:32:06 +00:00
|
|
|
MachineBasicBlock *BB) {
|
2006-01-23 07:01:07 +00:00
|
|
|
return new ScheduleDAGSimple(Heuristic, DAG, BB, DAG.getTarget());
|
2006-01-21 02:32:06 +00:00
|
|
|
}
|