llvm-6502/lib/Target/ARM/ARMScheduleA8.td

619 lines
29 KiB
TableGen
Raw Normal View History

//=- ARMScheduleA8.td - ARM Cortex-A8 Scheduling Definitions -*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the itinerary class data for the ARM Cortex A8 processors.
//
//===----------------------------------------------------------------------===//
//
// Scheduling information derived from "Cortex-A8 Technical Reference Manual".
// Functional Units.
def A8_Issue : FuncUnit; // issue
def A8_Pipe0 : FuncUnit; // pipeline 0
def A8_Pipe1 : FuncUnit; // pipeline 1
def A8_LdSt0 : FuncUnit; // pipeline 0 load/store
def A8_LdSt1 : FuncUnit; // pipeline 1 load/store
def A8_NPipe : FuncUnit; // NEON ALU/MUL pipe
def A8_NLSPipe : FuncUnit; // NEON LS pipe
//
// Dual issue pipeline represented by A8_Pipe0 | A8_Pipe1
//
def CortexA8Itineraries : ProcessorItineraries<
[A8_Issue, A8_Pipe0, A8_Pipe1, A8_LdSt0, A8_LdSt1, A8_NPipe, A8_NLSPipe], [
// Two fully-pipelined integer ALU pipelines
//
// No operand cycles
InstrItinData<IIC_iALUx , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>]>,
//
// Binary Instructions that produce a result
InstrItinData<IIC_iALUi , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2]>,
InstrItinData<IIC_iALUr , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2, 2]>,
InstrItinData<IIC_iALUsi , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2, 1]>,
InstrItinData<IIC_iALUsr , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2, 1, 1]>,
//
// Unary Instructions that produce a result
InstrItinData<IIC_iUNAr , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2]>,
InstrItinData<IIC_iUNAsi , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 1]>,
InstrItinData<IIC_iUNAsr , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 1, 1]>,
//
// Compare instructions
InstrItinData<IIC_iCMPi , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2]>,
InstrItinData<IIC_iCMPr , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2]>,
InstrItinData<IIC_iCMPsi , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 1]>,
InstrItinData<IIC_iCMPsr , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 1, 1]>,
//
// Move instructions, unconditional
InstrItinData<IIC_iMOVi , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [1]>,
InstrItinData<IIC_iMOVr , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [1, 1]>,
InstrItinData<IIC_iMOVsi , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [1, 1]>,
InstrItinData<IIC_iMOVsr , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [1, 1, 1]>,
//
// Move instructions, conditional
InstrItinData<IIC_iCMOVi , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2]>,
InstrItinData<IIC_iCMOVr , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 1]>,
InstrItinData<IIC_iCMOVsi , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 1]>,
InstrItinData<IIC_iCMOVsr , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 1, 1]>,
// Integer multiply pipeline
// Result written in E5, but that is relative to the last cycle of multicycle,
// so we use 6 for those cases
//
InstrItinData<IIC_iMUL16 , [InstrStage<1, [A8_Pipe0]>], [5, 1, 1]>,
InstrItinData<IIC_iMAC16 , [InstrStage<1, [A8_Pipe1], 0>,
InstrStage<2, [A8_Pipe0]>], [6, 1, 1, 4]>,
InstrItinData<IIC_iMUL32 , [InstrStage<1, [A8_Pipe1], 0>,
InstrStage<2, [A8_Pipe0]>], [6, 1, 1]>,
InstrItinData<IIC_iMAC32 , [InstrStage<1, [A8_Pipe1], 0>,
InstrStage<2, [A8_Pipe0]>], [6, 1, 1, 4]>,
InstrItinData<IIC_iMUL64 , [InstrStage<2, [A8_Pipe1], 0>,
InstrStage<3, [A8_Pipe0]>], [6, 6, 1, 1]>,
InstrItinData<IIC_iMAC64 , [InstrStage<2, [A8_Pipe1], 0>,
InstrStage<3, [A8_Pipe0]>], [6, 6, 1, 1]>,
// Integer load pipeline
//
// loads have an extra cycle of latency, but are fully pipelined
// use A8_Issue to enforce the 1 load/store per cycle limit
//
// Immediate offset
InstrItinData<IIC_iLoadi , [InstrStage<1, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0]>], [3, 1]>,
//
// Register offset
InstrItinData<IIC_iLoadr , [InstrStage<1, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0]>], [3, 1, 1]>,
//
// Scaled register offset, issues over 2 cycles
InstrItinData<IIC_iLoadsi , [InstrStage<2, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0], 0>,
InstrStage<1, [A8_Pipe1]>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0]>], [4, 1, 1]>,
//
// Immediate offset with update
InstrItinData<IIC_iLoadiu , [InstrStage<1, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0]>], [3, 2, 1]>,
//
// Register offset with update
InstrItinData<IIC_iLoadru , [InstrStage<1, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0]>], [3, 2, 1, 1]>,
//
// Scaled register offset with update, issues over 2 cycles
InstrItinData<IIC_iLoadsiu , [InstrStage<2, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0], 0>,
InstrStage<1, [A8_Pipe1]>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0]>], [4, 3, 1, 1]>,
//
// Load multiple
InstrItinData<IIC_iLoadm , [InstrStage<2, [A8_Issue], 0>,
InstrStage<2, [A8_Pipe0], 0>,
InstrStage<2, [A8_Pipe1]>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0]>]>,
// Integer store pipeline
//
// use A8_Issue to enforce the 1 load/store per cycle limit
//
// Immediate offset
InstrItinData<IIC_iStorei , [InstrStage<1, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0]>], [3, 1]>,
//
// Register offset
InstrItinData<IIC_iStorer , [InstrStage<1, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0]>], [3, 1, 1]>,
//
// Scaled register offset, issues over 2 cycles
InstrItinData<IIC_iStoresi , [InstrStage<2, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0], 0>,
InstrStage<1, [A8_Pipe1]>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0]>], [3, 1, 1]>,
//
// Immediate offset with update
InstrItinData<IIC_iStoreiu , [InstrStage<1, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0]>], [2, 3, 1]>,
//
// Register offset with update
InstrItinData<IIC_iStoreru , [InstrStage<1, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0]>], [2, 3, 1, 1]>,
//
// Scaled register offset with update, issues over 2 cycles
InstrItinData<IIC_iStoresiu, [InstrStage<2, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0], 0>,
InstrStage<1, [A8_Pipe1]>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0]>], [3, 3, 1, 1]>,
//
// Store multiple
InstrItinData<IIC_iStorem , [InstrStage<2, [A8_Issue], 0>,
InstrStage<2, [A8_Pipe0], 0>,
InstrStage<2, [A8_Pipe1]>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0]>]>,
// Branch
//
// no delay slots, so the latency of a branch is unimportant
InstrItinData<IIC_Br , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>]>,
// VFP
// Issue through integer pipeline, and execute in NEON unit. We assume
// RunFast mode so that NFP pipeline is used for single-precision when
// possible.
//
// FP Special Register to Integer Register File Move
InstrItinData<IIC_fpSTAT , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NLSPipe]>]>,
//
// Single-precision FP Unary
InstrItinData<IIC_fpUNA32 , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [7, 1]>,
//
// Double-precision FP Unary
InstrItinData<IIC_fpUNA64 , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<4, [A8_NPipe], 0>,
InstrStage<4, [A8_NLSPipe]>], [4, 1]>,
//
// Single-precision FP Compare
InstrItinData<IIC_fpCMP32 , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [1, 1]>,
//
// Double-precision FP Compare
InstrItinData<IIC_fpCMP64 , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<4, [A8_NPipe], 0>,
InstrStage<4, [A8_NLSPipe]>], [4, 1]>,
//
// Single to Double FP Convert
InstrItinData<IIC_fpCVTSD , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<7, [A8_NPipe], 0>,
InstrStage<7, [A8_NLSPipe]>], [7, 1]>,
//
// Double to Single FP Convert
InstrItinData<IIC_fpCVTDS , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<5, [A8_NPipe], 0>,
InstrStage<5, [A8_NLSPipe]>], [5, 1]>,
//
// Single-Precision FP to Integer Convert
InstrItinData<IIC_fpCVTSI , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [7, 1]>,
//
// Double-Precision FP to Integer Convert
InstrItinData<IIC_fpCVTDI , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<8, [A8_NPipe], 0>,
InstrStage<8, [A8_NLSPipe]>], [8, 1]>,
//
// Integer to Single-Precision FP Convert
InstrItinData<IIC_fpCVTIS , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [7, 1]>,
//
// Integer to Double-Precision FP Convert
InstrItinData<IIC_fpCVTID , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<8, [A8_NPipe], 0>,
InstrStage<8, [A8_NLSPipe]>], [8, 1]>,
//
// Single-precision FP ALU
InstrItinData<IIC_fpALU32 , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [7, 1, 1]>,
//
// Double-precision FP ALU
InstrItinData<IIC_fpALU64 , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<9, [A8_NPipe], 0>,
InstrStage<9, [A8_NLSPipe]>], [9, 1, 1]>,
//
// Single-precision FP Multiply
InstrItinData<IIC_fpMUL32 , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [7, 1, 1]>,
//
// Double-precision FP Multiply
InstrItinData<IIC_fpMUL64 , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<11, [A8_NPipe], 0>,
InstrStage<11, [A8_NLSPipe]>], [11, 1, 1]>,
//
// Single-precision FP MAC
InstrItinData<IIC_fpMAC32 , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [7, 2, 1, 1]>,
//
// Double-precision FP MAC
InstrItinData<IIC_fpMAC64 , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<19, [A8_NPipe], 0>,
InstrStage<19, [A8_NLSPipe]>], [19, 2, 1, 1]>,
//
// Single-precision FP DIV
InstrItinData<IIC_fpDIV32 , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<20, [A8_NPipe], 0>,
InstrStage<20, [A8_NLSPipe]>], [20, 1, 1]>,
//
// Double-precision FP DIV
InstrItinData<IIC_fpDIV64 , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<29, [A8_NPipe], 0>,
InstrStage<29, [A8_NLSPipe]>], [29, 1, 1]>,
//
// Single-precision FP SQRT
InstrItinData<IIC_fpSQRT32, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<19, [A8_NPipe], 0>,
InstrStage<19, [A8_NLSPipe]>], [19, 1]>,
//
// Double-precision FP SQRT
InstrItinData<IIC_fpSQRT64, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<29, [A8_NPipe], 0>,
InstrStage<29, [A8_NLSPipe]>], [29, 1]>,
//
// Single-precision FP Load
// use A8_Issue to enforce the 1 load/store per cycle limit
InstrItinData<IIC_fpLoad32, [InstrStage<1, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0], 0>,
InstrStage<1, [A8_NLSPipe]>]>,
//
// Double-precision FP Load
// use A8_Issue to enforce the 1 load/store per cycle limit
InstrItinData<IIC_fpLoad64, [InstrStage<2, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0], 0>,
InstrStage<1, [A8_Pipe1]>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0], 0>,
InstrStage<1, [A8_NLSPipe]>]>,
//
// FP Load Multiple
// use A8_Issue to enforce the 1 load/store per cycle limit
InstrItinData<IIC_fpLoadm, [InstrStage<3, [A8_Issue], 0>,
InstrStage<2, [A8_Pipe0], 0>,
InstrStage<2, [A8_Pipe1]>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0], 0>,
InstrStage<1, [A8_NLSPipe]>]>,
//
// Single-precision FP Store
// use A8_Issue to enforce the 1 load/store per cycle limit
InstrItinData<IIC_fpStore32,[InstrStage<1, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0], 0>,
InstrStage<1, [A8_NLSPipe]>]>,
//
// Double-precision FP Store
// use A8_Issue to enforce the 1 load/store per cycle limit
InstrItinData<IIC_fpStore64,[InstrStage<2, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0], 0>,
InstrStage<1, [A8_Pipe1]>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0], 0>,
InstrStage<1, [A8_NLSPipe]>]>,
//
// FP Store Multiple
// use A8_Issue to enforce the 1 load/store per cycle limit
InstrItinData<IIC_fpStorem, [InstrStage<3, [A8_Issue], 0>,
InstrStage<2, [A8_Pipe0], 0>,
InstrStage<2, [A8_Pipe1]>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0], 0>,
InstrStage<1, [A8_NLSPipe]>]>,
// NEON
// Issue through integer pipeline, and execute in NEON unit.
//
// VLD1
// FIXME: We don't model this instruction properly
InstrItinData<IIC_VLD1, [InstrStage<1, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0], 0>,
InstrStage<1, [A8_NLSPipe]>]>,
//
// VLD2
// FIXME: We don't model this instruction properly
InstrItinData<IIC_VLD2, [InstrStage<1, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0], 0>,
InstrStage<1, [A8_NLSPipe]>], [2, 2, 1]>,
//
// VLD3
// FIXME: We don't model this instruction properly
InstrItinData<IIC_VLD3, [InstrStage<1, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0], 0>,
InstrStage<1, [A8_NLSPipe]>], [2, 2, 2, 1]>,
//
// VLD4
// FIXME: We don't model this instruction properly
InstrItinData<IIC_VLD4, [InstrStage<1, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0], 0>,
InstrStage<1, [A8_NLSPipe]>], [2, 2, 2, 2, 1]>,
//
// VST
// FIXME: We don't model this instruction properly
InstrItinData<IIC_VST, [InstrStage<1, [A8_Issue], 0>,
InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_LdSt0], 0>,
InstrStage<1, [A8_NLSPipe]>]>,
//
// Double-register FP Unary
InstrItinData<IIC_VUNAD, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [5, 2]>,
//
// Quad-register FP Unary
// Result written in N5, but that is relative to the last cycle of multicycle,
// so we use 6 for those cases
InstrItinData<IIC_VUNAQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NPipe]>], [6, 2]>,
//
// Double-register FP Binary
InstrItinData<IIC_VBIND, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [5, 2, 2]>,
//
// Quad-register FP Binary
// Result written in N5, but that is relative to the last cycle of multicycle,
// so we use 6 for those cases
InstrItinData<IIC_VBINQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NPipe]>], [6, 2, 2]>,
//
// Move Immediate
InstrItinData<IIC_VMOVImm, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [3]>,
//
// Double-register Permute Move
InstrItinData<IIC_VMOVD, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NLSPipe]>], [2, 1]>,
//
// Quad-register Permute Move
// Result written in N2, but that is relative to the last cycle of multicycle,
// so we use 3 for those cases
InstrItinData<IIC_VMOVQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NLSPipe]>], [3, 1]>,
//
// Integer to Single-precision Move
InstrItinData<IIC_VMOVIS , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NLSPipe]>], [2, 1]>,
//
// Integer to Double-precision Move
InstrItinData<IIC_VMOVID , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NLSPipe]>], [2, 1, 1]>,
//
// Single-precision to Integer Move
InstrItinData<IIC_VMOVSI , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NLSPipe]>], [20, 1]>,
//
// Double-precision to Integer Move
InstrItinData<IIC_VMOVDI , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NLSPipe]>], [20, 20, 1]>,
//
// Integer to Lane Move
InstrItinData<IIC_VMOVISL , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NLSPipe]>], [3, 1, 1]>,
//
// Double-register Permute
InstrItinData<IIC_VPERMD, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NLSPipe]>], [2, 2, 1, 1]>,
//
// Quad-register Permute
// Result written in N2, but that is relative to the last cycle of multicycle,
// so we use 3 for those cases
InstrItinData<IIC_VPERMQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NLSPipe]>], [3, 3, 1, 1]>,
//
// Quad-register Permute (3 cycle issue)
// Result written in N2, but that is relative to the last cycle of multicycle,
// so we use 4 for those cases
InstrItinData<IIC_VPERMQ3, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NLSPipe]>,
InstrStage<1, [A8_NPipe], 0>,
InstrStage<2, [A8_NLSPipe]>], [4, 4, 1, 1]>,
//
// Double-register FP Multiple-Accumulate
InstrItinData<IIC_VMACD, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [9, 3, 2, 2]>,
//
// Quad-register FP Multiple-Accumulate
// Result written in N9, but that is relative to the last cycle of multicycle,
// so we use 10 for those cases
InstrItinData<IIC_VMACQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NPipe]>], [10, 3, 2, 2]>,
//
// Double-register Reciprical Step
InstrItinData<IIC_VRECSD, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [9, 2, 2]>,
//
// Quad-register Reciprical Step
InstrItinData<IIC_VRECSQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NPipe]>], [10, 2, 2]>,
//
// Double-register Integer Count
InstrItinData<IIC_VCNTiD, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [3, 2, 2]>,
//
// Quad-register Integer Count
// Result written in N3, but that is relative to the last cycle of multicycle,
// so we use 4 for those cases
InstrItinData<IIC_VCNTiQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NPipe]>], [4, 2, 2]>,
//
// Double-register Integer Unary
InstrItinData<IIC_VUNAiD, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [4, 2]>,
//
// Quad-register Integer Unary
InstrItinData<IIC_VUNAiQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [4, 2]>,
//
// Double-register Integer Q-Unary
InstrItinData<IIC_VQUNAiD, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [4, 1]>,
//
// Quad-register Integer CountQ-Unary
InstrItinData<IIC_VQUNAiQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [4, 1]>,
//
// Double-register Integer Binary
InstrItinData<IIC_VBINiD, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [3, 2, 2]>,
//
// Quad-register Integer Binary
InstrItinData<IIC_VBINiQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [3, 2, 2]>,
//
// Double-register Integer Binary (4 cycle)
InstrItinData<IIC_VBINi4D, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [4, 2, 1]>,
//
// Quad-register Integer Binary (4 cycle)
InstrItinData<IIC_VBINi4Q, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [4, 2, 1]>,
//
// Double-register Integer Subtract
InstrItinData<IIC_VSUBiD, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [3, 2, 1]>,
//
// Quad-register Integer Subtract
InstrItinData<IIC_VSUBiQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [3, 2, 1]>,
//
// Double-register Integer Subtract
InstrItinData<IIC_VSUBi4D, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [4, 2, 1]>,
//
// Quad-register Integer Subtract
InstrItinData<IIC_VSUBi4Q, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [4, 2, 1]>,
//
// Double-register Integer Shift
InstrItinData<IIC_VSHLiD, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [3, 1, 1]>,
//
// Quad-register Integer Shift
InstrItinData<IIC_VSHLiQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NPipe]>], [4, 1, 1]>,
//
// Double-register Integer Shift (4 cycle)
InstrItinData<IIC_VSHLi4D, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [4, 1, 1]>,
//
// Quad-register Integer Shift (4 cycle)
InstrItinData<IIC_VSHLi4Q, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NPipe]>], [5, 1, 1]>,
//
// Double-register Integer Pair Add Long
InstrItinData<IIC_VPALiD, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [6, 3, 1]>,
//
// Quad-register Integer Pair Add Long
InstrItinData<IIC_VPALiQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NPipe]>], [7, 3, 1]>,
//
// Double-register Absolute Difference and Accumulate
InstrItinData<IIC_VABAD, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [6, 3, 2, 1]>,
//
// Quad-register Absolute Difference and Accumulate
InstrItinData<IIC_VABAQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NPipe]>], [6, 3, 2, 1]>,
//
// Double-register Integer Multiply (.8, .16)
InstrItinData<IIC_VMULi16D, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [6, 2, 2]>,
//
// Double-register Integer Multiply (.32)
InstrItinData<IIC_VMULi32D, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NPipe]>], [7, 2, 1]>,
//
// Quad-register Integer Multiply (.8, .16)
InstrItinData<IIC_VMULi16Q, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NPipe]>], [7, 2, 2]>,
//
// Quad-register Integer Multiply (.32)
InstrItinData<IIC_VMULi32Q, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>,
InstrStage<2, [A8_NLSPipe], 0>,
InstrStage<3, [A8_NPipe]>], [9, 2, 1]>,
//
// Double-register Integer Multiply-Accumulate (.8, .16)
InstrItinData<IIC_VMACi16D, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>], [6, 3, 2, 2]>,
//
// Double-register Integer Multiply-Accumulate (.32)
InstrItinData<IIC_VMACi32D, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NPipe]>], [7, 3, 2, 1]>,
//
// Quad-register Integer Multiply-Accumulate (.8, .16)
InstrItinData<IIC_VMACi16Q, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NPipe]>], [7, 3, 2, 2]>,
//
// Quad-register Integer Multiply-Accumulate (.32)
InstrItinData<IIC_VMACi32Q, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NPipe]>,
InstrStage<2, [A8_NLSPipe], 0>,
InstrStage<3, [A8_NPipe]>], [9, 3, 2, 1]>,
//
// Double-register VEXT
InstrItinData<IIC_VEXTD, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NLSPipe]>], [2, 1, 1]>,
//
// Quad-register VEXT
InstrItinData<IIC_VEXTQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NLSPipe]>], [3, 1, 1]>,
//
// VTB
InstrItinData<IIC_VTB1, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NLSPipe]>], [3, 2, 1]>,
InstrItinData<IIC_VTB2, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NLSPipe]>], [3, 2, 2, 1]>,
InstrItinData<IIC_VTB3, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NLSPipe]>,
InstrStage<1, [A8_NPipe], 0>,
InstrStage<2, [A8_NLSPipe]>], [4, 2, 2, 3, 1]>,
InstrItinData<IIC_VTB4, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NLSPipe]>,
InstrStage<1, [A8_NPipe], 0>,
InstrStage<2, [A8_NLSPipe]>], [4, 2, 2, 3, 3, 1]>,
//
// VTBX
InstrItinData<IIC_VTBX1, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NLSPipe]>], [3, 1, 2, 1]>,
InstrItinData<IIC_VTBX2, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<2, [A8_NLSPipe]>], [3, 1, 2, 2, 1]>,
InstrItinData<IIC_VTBX3, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NLSPipe]>,
InstrStage<1, [A8_NPipe], 0>,
InstrStage<2, [A8_NLSPipe]>], [4, 1, 2, 2, 3, 1]>,
InstrItinData<IIC_VTBX4, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
InstrStage<1, [A8_NLSPipe]>,
InstrStage<1, [A8_NPipe], 0>,
InstrStage<2, [A8_NLSPipe]>], [4, 1, 2, 2, 3, 3, 1]>
]>;