llvm-6502/lib/CodeGen/MachineSSAUpdater.cpp

395 lines
15 KiB
C++
Raw Normal View History

//===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MachineSSAUpdater class. It's based on SSAUpdater
// class in lib/Transforms/Utils.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineSSAUpdater.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy;
typedef std::vector<std::pair<MachineBasicBlock*, unsigned> >
IncomingPredInfoTy;
static AvailableValsTy &getAvailableVals(void *AV) {
return *static_cast<AvailableValsTy*>(AV);
}
static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) {
return *static_cast<IncomingPredInfoTy*>(IPI);
}
MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
SmallVectorImpl<MachineInstr*> *NewPHI)
: AV(0), IPI(0), InsertedPHIs(NewPHI) {
TII = MF.getTarget().getInstrInfo();
MRI = &MF.getRegInfo();
}
MachineSSAUpdater::~MachineSSAUpdater() {
delete &getAvailableVals(AV);
delete &getIncomingPredInfo(IPI);
}
/// Initialize - Reset this object to get ready for a new set of SSA
/// updates. ProtoValue is the value used to name PHI nodes.
void MachineSSAUpdater::Initialize(unsigned V) {
if (AV == 0)
AV = new AvailableValsTy();
else
getAvailableVals(AV).clear();
if (IPI == 0)
IPI = new IncomingPredInfoTy();
else
getIncomingPredInfo(IPI).clear();
VR = V;
VRC = MRI->getRegClass(VR);
}
/// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for
/// the specified block.
bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const {
return getAvailableVals(AV).count(BB);
}
/// AddAvailableValue - Indicate that a rewritten value is available in the
/// specified block with the specified value.
void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) {
getAvailableVals(AV)[BB] = V;
}
/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
/// live at the end of the specified block.
unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
return GetValueAtEndOfBlockInternal(BB);
}
static
unsigned LookForIdenticalPHI(MachineBasicBlock *BB,
SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> &PredValues) {
if (BB->empty())
return 0;
MachineBasicBlock::iterator I = BB->front();
if (!I->isPHI())
return 0;
AvailableValsTy AVals;
for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
AVals[PredValues[i].first] = PredValues[i].second;
while (I != BB->end() && I->isPHI()) {
bool Same = true;
for (unsigned i = 1, e = I->getNumOperands(); i != e; i += 2) {
unsigned SrcReg = I->getOperand(i).getReg();
MachineBasicBlock *SrcBB = I->getOperand(i+1).getMBB();
if (AVals[SrcBB] != SrcReg) {
Same = false;
break;
}
}
if (Same)
return I->getOperand(0).getReg();
++I;
}
return 0;
}
/// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define
/// a value of the given register class at the start of the specified basic
/// block. It returns the virtual register defined by the instruction.
static
MachineInstr *InsertNewDef(unsigned Opcode,
MachineBasicBlock *BB, MachineBasicBlock::iterator I,
const TargetRegisterClass *RC,
MachineRegisterInfo *MRI, const TargetInstrInfo *TII) {
unsigned NewVR = MRI->createVirtualRegister(RC);
return BuildMI(*BB, I, DebugLoc::getUnknownLoc(), TII->get(Opcode), NewVR);
}
/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
/// is live in the middle of the specified block.
///
/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
/// important case: if there is a definition of the rewritten value after the
/// 'use' in BB. Consider code like this:
///
/// X1 = ...
/// SomeBB:
/// use(X)
/// X2 = ...
/// br Cond, SomeBB, OutBB
///
/// In this case, there are two values (X1 and X2) added to the AvailableVals
/// set by the client of the rewriter, and those values are both live out of
/// their respective blocks. However, the use of X happens in the *middle* of
/// a block. Because of this, we need to insert a new PHI node in SomeBB to
/// merge the appropriate values, and this value isn't live out of the block.
///
unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
// If there is no definition of the renamed variable in this block, just use
// GetValueAtEndOfBlock to do our work.
if (!getAvailableVals(AV).count(BB))
return GetValueAtEndOfBlockInternal(BB);
// If there are no predecessors, just return undef.
if (BB->pred_empty()) {
// Insert an implicit_def to represent an undef value.
MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
BB, BB->getFirstTerminator(),
VRC, MRI, TII);
return NewDef->getOperand(0).getReg();
}
// Otherwise, we have the hard case. Get the live-in values for each
// predecessor.
SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues;
unsigned SingularValue = 0;
bool isFirstPred = true;
for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
E = BB->pred_end(); PI != E; ++PI) {
MachineBasicBlock *PredBB = *PI;
unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
PredValues.push_back(std::make_pair(PredBB, PredVal));
// Compute SingularValue.
if (isFirstPred) {
SingularValue = PredVal;
isFirstPred = false;
} else if (PredVal != SingularValue)
SingularValue = 0;
}
// Otherwise, if all the merged values are the same, just use it.
if (SingularValue != 0)
return SingularValue;
// If an identical PHI is already in BB, just reuse it.
unsigned DupPHI = LookForIdenticalPHI(BB, PredValues);
if (DupPHI)
return DupPHI;
// Otherwise, we do need a PHI: insert one now.
MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
MachineInstr *InsertedPHI = InsertNewDef(TargetOpcode::PHI, BB,
Loc, VRC, MRI, TII);
// Fill in all the predecessors of the PHI.
MachineInstrBuilder MIB(InsertedPHI);
for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first);
// See if the PHI node can be merged to a single value. This can happen in
// loop cases when we get a PHI of itself and one other value.
if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
InsertedPHI->eraseFromParent();
return ConstVal;
}
// If the client wants to know about all new instructions, tell it.
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
return InsertedPHI->getOperand(0).getReg();
}
static
MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI,
MachineOperand *U) {
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
if (&MI->getOperand(i) == U)
return MI->getOperand(i+1).getMBB();
}
llvm_unreachable("MachineOperand::getParent() failure?");
return 0;
}
/// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes,
/// which use their value in the corresponding predecessor.
void MachineSSAUpdater::RewriteUse(MachineOperand &U) {
MachineInstr *UseMI = U.getParent();
unsigned NewVR = 0;
if (UseMI->isPHI()) {
MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U);
NewVR = GetValueAtEndOfBlockInternal(SourceBB);
} else {
NewVR = GetValueInMiddleOfBlock(UseMI->getParent());
}
U.setReg(NewVR);
}
void MachineSSAUpdater::ReplaceRegWith(unsigned OldReg, unsigned NewReg) {
MRI->replaceRegWith(OldReg, NewReg);
AvailableValsTy &AvailableVals = getAvailableVals(AV);
for (DenseMap<MachineBasicBlock*, unsigned>::iterator
I = AvailableVals.begin(), E = AvailableVals.end(); I != E; ++I)
if (I->second == OldReg)
I->second = NewReg;
}
/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
/// for the specified BB and if so, return it. If not, construct SSA form by
/// walking predecessors inserting PHI nodes as needed until we get to a block
/// where the value is available.
///
unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
AvailableValsTy &AvailableVals = getAvailableVals(AV);
// Query AvailableVals by doing an insertion of null.
std::pair<AvailableValsTy::iterator, bool> InsertRes =
AvailableVals.insert(std::make_pair(BB, 0));
// Handle the case when the insertion fails because we have already seen BB.
if (!InsertRes.second) {
// If the insertion failed, there are two cases. The first case is that the
// value is already available for the specified block. If we get this, just
// return the value.
if (InsertRes.first->second != 0)
return InsertRes.first->second;
// Otherwise, if the value we find is null, then this is the value is not
// known but it is being computed elsewhere in our recursion. This means
// that we have a cycle. Handle this by inserting a PHI node and returning
// it. When we get back to the first instance of the recursion we will fill
// in the PHI node.
MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
MachineInstr *NewPHI = InsertNewDef(TargetOpcode::PHI, BB, Loc,
VRC, MRI,TII);
unsigned NewVR = NewPHI->getOperand(0).getReg();
InsertRes.first->second = NewVR;
return NewVR;
}
// If there are no predecessors, then we must have found an unreachable block
// just return 'undef'. Since there are no predecessors, InsertRes must not
// be invalidated.
if (BB->pred_empty()) {
// Insert an implicit_def to represent an undef value.
MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
BB, BB->getFirstTerminator(),
VRC, MRI, TII);
return InsertRes.first->second = NewDef->getOperand(0).getReg();
}
// Okay, the value isn't in the map and we just inserted a null in the entry
// to indicate that we're processing the block. Since we have no idea what
// value is in this block, we have to recurse through our predecessors.
//
// While we're walking our predecessors, we keep track of them in a vector,
// then insert a PHI node in the end if we actually need one. We could use a
// smallvector here, but that would take a lot of stack space for every level
// of the recursion, just use IncomingPredInfo as an explicit stack.
IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI);
unsigned FirstPredInfoEntry = IncomingPredInfo.size();
// As we're walking the predecessors, keep track of whether they are all
// producing the same value. If so, this value will capture it, if not, it
// will get reset to null. We distinguish the no-predecessor case explicitly
// below.
unsigned SingularValue = 0;
bool isFirstPred = true;
for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
E = BB->pred_end(); PI != E; ++PI) {
MachineBasicBlock *PredBB = *PI;
unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
// Compute SingularValue.
if (isFirstPred) {
SingularValue = PredVal;
isFirstPred = false;
} else if (PredVal != SingularValue)
SingularValue = 0;
}
/// Look up BB's entry in AvailableVals. 'InsertRes' may be invalidated. If
/// this block is involved in a loop, a no-entry PHI node will have been
/// inserted as InsertedVal. Otherwise, we'll still have the null we inserted
/// above.
unsigned &InsertedVal = AvailableVals[BB];
// If all the predecessor values are the same then we don't need to insert a
// PHI. This is the simple and common case.
if (SingularValue) {
// If a PHI node got inserted, replace it with the singlar value and delete
// it.
if (InsertedVal) {
MachineInstr *OldVal = MRI->getVRegDef(InsertedVal);
// Be careful about dead loops. These RAUW's also update InsertedVal.
assert(InsertedVal != SingularValue && "Dead loop?");
ReplaceRegWith(InsertedVal, SingularValue);
OldVal->eraseFromParent();
}
InsertedVal = SingularValue;
// Drop the entries we added in IncomingPredInfo to restore the stack.
IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
IncomingPredInfo.end());
return InsertedVal;
}
// Otherwise, we do need a PHI: insert one now if we don't already have one.
MachineInstr *InsertedPHI;
if (InsertedVal == 0) {
MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
InsertedPHI = InsertNewDef(TargetOpcode::PHI, BB, Loc,
VRC, MRI, TII);
InsertedVal = InsertedPHI->getOperand(0).getReg();
} else {
InsertedPHI = MRI->getVRegDef(InsertedVal);
}
// Fill in all the predecessors of the PHI.
MachineInstrBuilder MIB(InsertedPHI);
for (IncomingPredInfoTy::iterator I =
IncomingPredInfo.begin()+FirstPredInfoEntry,
E = IncomingPredInfo.end(); I != E; ++I)
MIB.addReg(I->second).addMBB(I->first);
// Drop the entries we added in IncomingPredInfo to restore the stack.
IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
IncomingPredInfo.end());
// See if the PHI node can be merged to a single value. This can happen in
// loop cases when we get a PHI of itself and one other value.
if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
MRI->replaceRegWith(InsertedVal, ConstVal);
InsertedPHI->eraseFromParent();
InsertedVal = ConstVal;
} else {
DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
// If the client wants to know about all new instructions, tell it.
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
}
return InsertedVal;
}