llvm-6502/lib/Transforms/Utils/PromoteMemoryToRegister.cpp

291 lines
11 KiB
C++
Raw Normal View History

//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
//
// This file promote memory references to be register references. It promotes
// alloca instructions which only have loads and stores as uses. An alloca is
// transformed by using dominator frontiers to place PHI nodes, then traversing
// the function in depth-first order to rewrite loads and stores as appropriate.
// This is just the standard SSA construction algorithm.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/iMemory.h"
#include "llvm/iPHINode.h"
#include "llvm/Function.h"
#include "llvm/Constant.h"
#include "llvm/Support/CFG.h"
#include "Support/StringExtras.h"
/// isAllocaPromotable - Return true if this alloca is legal for promotion.
/// This is true if there are only loads and stores to the alloca...
///
bool isAllocaPromotable(const AllocaInst *AI, const TargetData &TD) {
// FIXME: If the memory unit is of pointer or integer type, we can permit
// assignments to subsections of the memory unit.
// Only allow direct loads and stores...
for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
UI != UE; ++UI) // Loop over all of the uses of the alloca
if (!isa<LoadInst>(*UI))
if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
if (SI->getOperand(0) == AI)
return false; // Don't allow a store of the AI, only INTO the AI.
} else {
return false; // Not a load or store?
}
return true;
}
namespace {
struct PromoteMem2Reg {
// Allocas - The alloca instructions being promoted
const std::vector<AllocaInst*> &Allocas;
DominanceFrontier &DF;
const TargetData &TD;
// AllocaLookup - Reverse mapping of Allocas
std::map<AllocaInst*, unsigned> AllocaLookup;
// VersionNumbers - Current version counters for each alloca
std::vector<unsigned> VersionNumbers;
// NewPhiNodes - The PhiNodes we're adding.
std::map<BasicBlock*, std::vector<PHINode*> > NewPhiNodes;
// Visited - The set of basic blocks the renamer has already visited.
std::set<BasicBlock*> Visited;
public:
PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominanceFrontier &df,
const TargetData &td) : Allocas(A), DF(df), TD(td) {}
void run();
private:
void RenamePass(BasicBlock *BB, BasicBlock *Pred,
std::vector<Value*> &IncVals);
bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx);
};
} // end of anonymous namespace
void PromoteMem2Reg::run() {
Function &F = *DF.getRoot()->getParent();
VersionNumbers.resize(Allocas.size());
for (unsigned i = 0; i != Allocas.size(); ++i) {
AllocaInst *AI = Allocas[i];
assert(isAllocaPromotable(AI, TD) &&
"Cannot promote non-promotable alloca!");
assert(Allocas[i]->getParent()->getParent() == &F &&
"All allocas should be in the same function, which is same as DF!");
// Calculate the set of write-locations for each alloca. This is analogous
// to counting the number of 'redefinitions' of each variable.
std::vector<BasicBlock*> DefiningBlocks;
for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E; ++U)
if (StoreInst *SI = dyn_cast<StoreInst>(cast<Instruction>(*U)))
// jot down the basic-block it came from
DefiningBlocks.push_back(SI->getParent());
AllocaLookup[Allocas[i]] = i;
// PhiNodeBlocks - A list of blocks that phi nodes have been inserted for
// this alloca.
std::vector<BasicBlock*> PhiNodeBlocks;
// Compute the locations where PhiNodes need to be inserted. Look at the
// dominance frontier of EACH basic-block we have a write in.
//
while (!DefiningBlocks.empty()) {
BasicBlock *BB = DefiningBlocks.back();
DefiningBlocks.pop_back();
// Look up the DF for this write, add it to PhiNodes
DominanceFrontier::const_iterator it = DF.find(BB);
if (it != DF.end()) {
const DominanceFrontier::DomSetType &S = it->second;
for (DominanceFrontier::DomSetType::iterator P = S.begin(),PE = S.end();
P != PE; ++P)
if (QueuePhiNode(*P, i))
DefiningBlocks.push_back(*P);
}
}
}
// Set the incoming values for the basic block to be null values for all of
// the alloca's. We do this in case there is a load of a value that has not
// been stored yet. In this case, it will get this null value.
//
std::vector<Value *> Values(Allocas.size());
for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
Values[i] = Constant::getNullValue(Allocas[i]->getAllocatedType());
// Walks all basic blocks in the function performing the SSA rename algorithm
// and inserting the phi nodes we marked as necessary
//
RenamePass(F.begin(), 0, Values);
// The renamer uses the Visited set to avoid infinite loops. Clear it now.
Visited.clear();
// Remove the allocas themselves from the function...
for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
Instruction *A = Allocas[i];
// If there are any uses of the alloca instructions left, they must be in
// sections of dead code that were not processed on the dominance frontier.
// Just delete the users now.
//
if (!A->use_empty())
A->replaceAllUsesWith(Constant::getNullValue(A->getType()));
A->getParent()->getInstList().erase(A);
}
// At this point, the renamer has added entries to PHI nodes for all reachable
// code. Unfortunately, there may be blocks which are not reachable, which
// the renamer hasn't traversed. If this is the case, the PHI nodes may not
// have incoming values for all predecessors. Loop over all PHI nodes we have
// created, inserting null constants if they are missing any incoming values.
//
for (std::map<BasicBlock*, std::vector<PHINode *> >::iterator I =
NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
std::vector<BasicBlock*> Preds(pred_begin(I->first), pred_end(I->first));
std::vector<PHINode*> &PNs = I->second;
assert(!PNs.empty() && "Empty PHI node list??");
// Only do work here if there the PHI nodes are missing incoming values. We
// know that all PHI nodes that were inserted in a block will have the same
// number of incoming values, so we can just check any PHI node.
PHINode *FirstPHI = PNs[0];
if (Preds.size() != FirstPHI->getNumIncomingValues()) {
// Ok, now we know that all of the PHI nodes are missing entries for some
// basic blocks. Start by sorting the incoming predecessors for efficient
// access.
std::sort(Preds.begin(), Preds.end());
// Now we loop through all BB's which have entries in FirstPHI and remove
// them from the Preds list.
for (unsigned i = 0, e = FirstPHI->getNumIncomingValues(); i != e; ++i) {
// Do a log(n) search of teh Preds list for the entry we want.
std::vector<BasicBlock*>::iterator EntIt =
std::lower_bound(Preds.begin(), Preds.end(),
FirstPHI->getIncomingBlock(i));
assert(EntIt != Preds.end() && *EntIt == FirstPHI->getIncomingBlock(i)&&
"PHI node has entry for a block which is not a predecessor!");
// Remove the entry
Preds.erase(EntIt);
}
// At this point, the blocks left in the preds list must have dummy
// entries inserted into every PHI nodes for the block.
for (unsigned i = 0, e = PNs.size(); i != e; ++i) {
PHINode *PN = PNs[i];
Value *NullVal = Constant::getNullValue(PN->getType());
for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
PN->addIncoming(NullVal, Preds[pred]);
}
}
}
}
// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
// Alloca returns true if there wasn't already a phi-node for that variable
//
bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo) {
// Look up the basic-block in question
std::vector<PHINode*> &BBPNs = NewPhiNodes[BB];
if (BBPNs.empty()) BBPNs.resize(Allocas.size());
// If the BB already has a phi node added for the i'th alloca then we're done!
if (BBPNs[AllocaNo]) return false;
// Create a PhiNode using the dereferenced type... and add the phi-node to the
// BasicBlock.
BBPNs[AllocaNo] = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
Allocas[AllocaNo]->getName() + "." +
utostr(VersionNumbers[AllocaNo]++),
BB->begin());
return true;
}
void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
std::vector<Value*> &IncomingVals) {
// If this BB needs a PHI node, update the PHI node for each variable we need
// PHI nodes for.
std::map<BasicBlock*, std::vector<PHINode *> >::iterator
BBPNI = NewPhiNodes.find(BB);
if (BBPNI != NewPhiNodes.end()) {
std::vector<PHINode *> &BBPNs = BBPNI->second;
for (unsigned k = 0; k != BBPNs.size(); ++k)
if (PHINode *PN = BBPNs[k]) {
// Add this incoming value to the PHI node.
PN->addIncoming(IncomingVals[k], Pred);
// The currently active variable for this block is now the PHI.
IncomingVals[k] = PN;
}
}
// don't revisit nodes
if (Visited.count(BB)) return;
// mark as visited
Visited.insert(BB);
for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
Instruction *I = II++; // get the instruction, increment iterator
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand())) {
std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
if (AI != AllocaLookup.end()) {
Value *V = IncomingVals[AI->second];
// walk the use list of this load and replace all uses with r
LI->replaceAllUsesWith(V);
BB->getInstList().erase(LI);
}
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
// Delete this instruction and mark the name as the current holder of the
// value
if (AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand())) {
std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
if (ai != AllocaLookup.end()) {
// what value were we writing?
IncomingVals[ai->second] = SI->getOperand(0);
BB->getInstList().erase(SI);
}
}
}
}
// Recurse to our successors
TerminatorInst *TI = BB->getTerminator();
for (unsigned i = 0; i != TI->getNumSuccessors(); i++) {
std::vector<Value*> OutgoingVals(IncomingVals);
RenamePass(TI->getSuccessor(i), BB, OutgoingVals);
}
}
/// PromoteMemToReg - Promote the specified list of alloca instructions into
/// scalar registers, inserting PHI nodes as appropriate. This function makes
/// use of DominanceFrontier information. This function does not modify the CFG
/// of the function at all. All allocas must be from the same function.
///
void PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
DominanceFrontier &DF, const TargetData &TD) {
// If there is nothing to do, bail out...
if (Allocas.empty()) return;
PromoteMem2Reg(Allocas, DF, TD).run();
}