2007-11-01 06:49:54 +00:00
|
|
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
|
|
|
|
"http://www.w3.org/TR/html4/strict.dtd">
|
|
|
|
|
|
|
|
<html>
|
|
|
|
<head>
|
2007-11-02 05:42:52 +00:00
|
|
|
<title>Kaleidoscope: Extending the Language: User-defined Operators</title>
|
2007-11-01 06:49:54 +00:00
|
|
|
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
|
|
|
|
<meta name="author" content="Chris Lattner">
|
|
|
|
<link rel="stylesheet" href="../llvm.css" type="text/css">
|
|
|
|
</head>
|
|
|
|
|
|
|
|
<body>
|
|
|
|
|
2007-11-02 05:42:52 +00:00
|
|
|
<div class="doc_title">Kaleidoscope: Extending the Language: User-defined Operators</div>
|
2007-11-01 06:49:54 +00:00
|
|
|
|
|
|
|
<div class="doc_author">
|
|
|
|
<p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
|
|
|
<div class="doc_section"><a name="intro">Part 6 Introduction</a></div>
|
|
|
|
<!-- *********************************************************************** -->
|
|
|
|
|
|
|
|
<div class="doc_text">
|
|
|
|
|
|
|
|
<p>Welcome to Part 6 of the "<a href="index.html">Implementing a language with
|
|
|
|
LLVM</a>" tutorial. At this point in our tutorial, we now have a fully
|
|
|
|
functional language that is fairly minimal, but also useful. One big problem
|
|
|
|
with it though is that it doesn't have many useful operators (like division,
|
|
|
|
logical negation, or even any comparisons other than less-than.</p>
|
|
|
|
|
2007-11-02 05:42:52 +00:00
|
|
|
<p>This chapter of the tutorial takes a wild digression into adding user-defined
|
|
|
|
operators to the simple and beautiful Kaleidoscope language, giving us a
|
2007-11-01 06:49:54 +00:00
|
|
|
simple and ugly language in some ways, but also a powerful one at the same time.
|
|
|
|
One of the great things about creating your own language is that you get to
|
|
|
|
decide what is good or bad. In this tutorial we'll assume that it is okay and
|
|
|
|
use this as a way to show some interesting parsing techniques.</p>
|
|
|
|
|
2007-11-02 05:42:52 +00:00
|
|
|
<p>At the end of this tutorial, we'll <a href="#example">run through a nice
|
|
|
|
little example</a> that shows an example application that you can build with
|
|
|
|
Kaleidoscope and the feature set it now has.</p>
|
|
|
|
|
2007-11-01 06:49:54 +00:00
|
|
|
</div>
|
|
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
2007-11-02 05:42:52 +00:00
|
|
|
<div class="doc_section"><a name="idea">User-defined Operators: the Idea</a></div>
|
2007-11-01 06:49:54 +00:00
|
|
|
<!-- *********************************************************************** -->
|
|
|
|
|
|
|
|
<div class="doc_text">
|
|
|
|
|
|
|
|
<p>
|
2007-11-02 05:42:52 +00:00
|
|
|
The "operator overloading" that we will add to Kaleidoscope is more general than
|
2007-11-01 06:49:54 +00:00
|
|
|
languages like C++. In C++, you are only allowed to redefine existing
|
|
|
|
operators: you can't programatically change the grammar, introduce new
|
|
|
|
operators, change precedence levels, etc. In this chapter, we will add this
|
|
|
|
capability to Kaleidoscope, which will allow us to round out the set of
|
|
|
|
operators that are supported, culminating in a more interesting example app.</p>
|
|
|
|
|
2007-11-02 05:42:52 +00:00
|
|
|
<p>The point of going into user-defined operators in a tutorial like this is to
|
2007-11-01 06:49:54 +00:00
|
|
|
show the power and flexibility of using a hand-written parser. The parser we
|
|
|
|
are using so far is using recursive descent for most parts of the grammar, and
|
|
|
|
operator precedence parsing for the expressions. See <a
|
|
|
|
href="LangImpl2.html">Chapter 2</a> for details. Without using operator
|
|
|
|
precedence parsing, it would be very difficult to allow the programmer to
|
|
|
|
introduce new operators into the grammar: the grammar is dynamically extensible
|
|
|
|
as the JIT runs.</p>
|
|
|
|
|
|
|
|
<p>The two specific features we'll add are programmable unary operators (right
|
|
|
|
now, Kaleidoscope has no unary operators at all) as well as binary operators.
|
|
|
|
An example of this is:</p>
|
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
# Logical unary not.
|
|
|
|
def unary!(v)
|
|
|
|
if v then
|
|
|
|
0
|
|
|
|
else
|
|
|
|
1;
|
|
|
|
|
|
|
|
# Define > with the same precedence as <.
|
|
|
|
def binary> 10 (LHS RHS)
|
|
|
|
!(LHS < RHS); # alternatively, could just use "RHS < LHS"
|
|
|
|
|
|
|
|
# Binary "logical or", (note that it does not "short circuit")
|
|
|
|
def binary| 5 (LHS RHS)
|
|
|
|
if LHS then
|
|
|
|
1
|
|
|
|
else if RHS then
|
|
|
|
1
|
|
|
|
else
|
|
|
|
0;
|
|
|
|
|
|
|
|
# Define = with slightly lower precedence than relationals.
|
|
|
|
def binary= 9 (LHS RHS)
|
|
|
|
!(LHS < RHS | LHS > RHS);
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<p>Many languages aspire to being able to implement their standard runtime
|
|
|
|
library in the language itself. In Kaleidoscope, we can implement significant
|
|
|
|
parts of the language in the library!</p>
|
|
|
|
|
|
|
|
<p>We will break down implementation of these features into two parts:
|
2007-11-02 05:42:52 +00:00
|
|
|
implementing support for user-defined binary operators and adding unary
|
2007-11-01 06:49:54 +00:00
|
|
|
operators.</p>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
2007-11-02 05:42:52 +00:00
|
|
|
<div class="doc_section"><a name="binary">User-defined Binary Operators</a></div>
|
2007-11-01 06:49:54 +00:00
|
|
|
<!-- *********************************************************************** -->
|
|
|
|
|
|
|
|
<div class="doc_text">
|
|
|
|
|
2007-11-02 05:42:52 +00:00
|
|
|
<p>Adding support for user-defined binary operators is pretty simple with our
|
2007-11-01 06:49:54 +00:00
|
|
|
current framework. We'll first add support for the unary/binary keywords:</p>
|
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
enum Token {
|
|
|
|
...
|
|
|
|
<b>// operators
|
|
|
|
tok_binary = -11, tok_unary = -12</b>
|
|
|
|
};
|
|
|
|
...
|
|
|
|
static int gettok() {
|
|
|
|
...
|
|
|
|
if (IdentifierStr == "for") return tok_for;
|
|
|
|
if (IdentifierStr == "in") return tok_in;
|
|
|
|
<b>if (IdentifierStr == "binary") return tok_binary;
|
|
|
|
if (IdentifierStr == "unary") return tok_unary;</b>
|
|
|
|
return tok_identifier;
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<p>This just adds lexer support for the unary and binary keywords, like we
|
|
|
|
did in <a href="LangImpl5.html#iflexer">previous chapters</a>. One nice thing
|
|
|
|
about our current AST is that we represent binary operators fully generally
|
|
|
|
with their ASCII code as the opcode. For our extended operators, we'll use the
|
|
|
|
same representation, so we don't need any new AST or parser support.</p>
|
|
|
|
|
|
|
|
<p>On the other hand, we have to be able to represent the definitions of these
|
|
|
|
new operators, in the "def binary| 5" part of the function definition. In the
|
|
|
|
grammar so far, the "name" for the function definition is parsed as the
|
|
|
|
"prototype" production and into the <tt>PrototypeAST</tt> AST node. To
|
|
|
|
represent our new user-defined operators as prototypes, we have to extend
|
|
|
|
the <tt>PrototypeAST</tt> AST node like this:</p>
|
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
/// PrototypeAST - This class represents the "prototype" for a function,
|
|
|
|
/// which captures its argument names as well as if it is an operator.
|
|
|
|
class PrototypeAST {
|
|
|
|
std::string Name;
|
|
|
|
std::vector<std::string> Args;
|
|
|
|
<b>bool isOperator;
|
|
|
|
unsigned Precedence; // Precedence if a binary op.</b>
|
|
|
|
public:
|
|
|
|
PrototypeAST(const std::string &name, const std::vector<std::string> &args,
|
|
|
|
<b>bool isoperator = false, unsigned prec = 0</b>)
|
|
|
|
: Name(name), Args(args), <b>isOperator(isoperator), Precedence(prec)</b> {}
|
|
|
|
|
|
|
|
<b>bool isUnaryOp() const { return isOperator && Args.size() == 1; }
|
|
|
|
bool isBinaryOp() const { return isOperator && Args.size() == 2; }
|
|
|
|
|
|
|
|
char getOperatorName() const {
|
|
|
|
assert(isUnaryOp() || isBinaryOp());
|
|
|
|
return Name[Name.size()-1];
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned getBinaryPrecedence() const { return Precedence; }</b>
|
|
|
|
|
|
|
|
Function *Codegen();
|
|
|
|
};
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<p>Basically, in addition to knowing a name for the prototype, we now keep track
|
|
|
|
of whether it was an operator, and if it was, what precedence level the operator
|
2007-11-02 05:42:52 +00:00
|
|
|
is at. The precedence is only used for binary operators (as you'll see below,
|
|
|
|
it just doesn't apply for unary operators). Now that we have a way to represent
|
|
|
|
the prototype for a user-defined operator, we need to parse it:</p>
|
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
/// prototype
|
|
|
|
/// ::= id '(' id* ')'
|
|
|
|
<b>/// ::= binary LETTER number? (id, id)</b>
|
|
|
|
static PrototypeAST *ParsePrototype() {
|
|
|
|
std::string FnName;
|
|
|
|
|
|
|
|
<b>int Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
|
|
|
|
unsigned BinaryPrecedence = 30;</b>
|
|
|
|
|
|
|
|
switch (CurTok) {
|
|
|
|
default:
|
|
|
|
return ErrorP("Expected function name in prototype");
|
|
|
|
case tok_identifier:
|
|
|
|
FnName = IdentifierStr;
|
|
|
|
Kind = 0;
|
|
|
|
getNextToken();
|
|
|
|
break;
|
|
|
|
<b>case tok_binary:
|
|
|
|
getNextToken();
|
|
|
|
if (!isascii(CurTok))
|
|
|
|
return ErrorP("Expected binary operator");
|
|
|
|
FnName = "binary";
|
|
|
|
FnName += (char)CurTok;
|
|
|
|
Kind = 2;
|
|
|
|
getNextToken();
|
|
|
|
|
|
|
|
// Read the precedence if present.
|
|
|
|
if (CurTok == tok_number) {
|
|
|
|
if (NumVal < 1 || NumVal > 100)
|
|
|
|
return ErrorP("Invalid precedecnce: must be 1..100");
|
|
|
|
BinaryPrecedence = (unsigned)NumVal;
|
|
|
|
getNextToken();
|
|
|
|
}
|
|
|
|
break;</b>
|
|
|
|
}
|
|
|
|
|
|
|
|
if (CurTok != '(')
|
|
|
|
return ErrorP("Expected '(' in prototype");
|
|
|
|
|
|
|
|
std::vector<std::string> ArgNames;
|
|
|
|
while (getNextToken() == tok_identifier)
|
|
|
|
ArgNames.push_back(IdentifierStr);
|
|
|
|
if (CurTok != ')')
|
|
|
|
return ErrorP("Expected ')' in prototype");
|
|
|
|
|
|
|
|
// success.
|
|
|
|
getNextToken(); // eat ')'.
|
|
|
|
|
|
|
|
<b>// Verify right number of names for operator.
|
|
|
|
if (Kind && ArgNames.size() != Kind)
|
|
|
|
return ErrorP("Invalid number of operands for operator");
|
|
|
|
|
|
|
|
return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);</b>
|
|
|
|
}
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<p>This is all fairly straight-forward parsing code, and we have already seen
|
|
|
|
a lot of similar code in the past. One interesting piece of this is the part
|
|
|
|
that sets up <tt>FnName</tt> for binary operators. This builds names like
|
|
|
|
"binary@" for a newly defined "@" operator. This takes advantage of the fact
|
|
|
|
that symbol names in the LLVM symbol table are allowed to have any character in
|
|
|
|
them, inluding embedded nul characters.</p>
|
|
|
|
|
|
|
|
<p>The next interesting piece is codegen support for these binary operators.
|
|
|
|
Given our current structure, this is a simple addition of a default case for our
|
|
|
|
existing binary operator node:</p>
|
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
Value *BinaryExprAST::Codegen() {
|
|
|
|
Value *L = LHS->Codegen();
|
|
|
|
Value *R = RHS->Codegen();
|
|
|
|
if (L == 0 || R == 0) return 0;
|
|
|
|
|
|
|
|
switch (Op) {
|
|
|
|
case '+': return Builder.CreateAdd(L, R, "addtmp");
|
|
|
|
case '-': return Builder.CreateSub(L, R, "subtmp");
|
|
|
|
case '*': return Builder.CreateMul(L, R, "multmp");
|
|
|
|
case '<':
|
|
|
|
L = Builder.CreateFCmpULT(L, R, "multmp");
|
|
|
|
// Convert bool 0/1 to double 0.0 or 1.0
|
|
|
|
return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp");
|
|
|
|
<b>default: break;</b>
|
|
|
|
}
|
|
|
|
|
|
|
|
<b>// If it wasn't a builtin binary operator, it must be a user defined one. Emit
|
|
|
|
// a call to it.
|
|
|
|
Function *F = TheModule->getFunction(std::string("binary")+Op);
|
|
|
|
assert(F && "binary operator not found!");
|
|
|
|
|
|
|
|
Value *Ops[] = { L, R };
|
|
|
|
return Builder.CreateCall(F, Ops, Ops+2, "binop");</b>
|
|
|
|
}
|
|
|
|
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<p>As you can see above, the new code is actually really simple. It just does
|
|
|
|
a lookup for the appropriate operator in the symbol table and generates a
|
|
|
|
function call to it. Since user-defined operators are just built as normal
|
|
|
|
functions (because the "prototype" boils down into a function with the right
|
|
|
|
name) everything falls into place.</p>
|
|
|
|
|
|
|
|
<p>The final missing piece is a bit of top level magic, here:</p>
|
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
Function *FunctionAST::Codegen() {
|
|
|
|
NamedValues.clear();
|
|
|
|
|
|
|
|
Function *TheFunction = Proto->Codegen();
|
|
|
|
if (TheFunction == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
<b>// If this is an operator, install it.
|
|
|
|
if (Proto->isBinaryOp())
|
|
|
|
BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();</b>
|
|
|
|
|
|
|
|
// Create a new basic block to start insertion into.
|
|
|
|
BasicBlock *BB = new BasicBlock("entry", TheFunction);
|
|
|
|
Builder.SetInsertPoint(BB);
|
|
|
|
|
|
|
|
if (Value *RetVal = Body->Codegen()) {
|
|
|
|
...
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<p>Basically, before codegening a function, if it is a user-defined operator, we
|
|
|
|
register it in the precedence table. This allows the binary operator parsing
|
|
|
|
logic we already have to handle it. Since it is a fully-general operator
|
|
|
|
precedence parser, this is all we need to do to "extend the grammar".</p>
|
|
|
|
|
|
|
|
<p>With that, we have useful user-defined binary operators. This builds a lot
|
|
|
|
on the previous framework we built for other operators. Adding unary operators
|
|
|
|
is a bit more challenging, because we don't have any framework for it yet, lets
|
|
|
|
see what it takes.</p>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
|
|
|
<div class="doc_section"><a name="unary">User-defined Unary Operators</a></div>
|
|
|
|
<!-- *********************************************************************** -->
|
|
|
|
|
|
|
|
<div class="doc_text">
|
|
|
|
|
|
|
|
<p>Since we don't currently support unary operators in the Kaleidoscope
|
|
|
|
langugage, we'll need to add everything for them. Above, we added simple
|
|
|
|
support for the 'unary' keyword to the lexer. In addition to that, we need an
|
|
|
|
AST node:</p>
|
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
/// UnaryExprAST - Expression class for a unary operator.
|
|
|
|
class UnaryExprAST : public ExprAST {
|
|
|
|
char Opcode;
|
|
|
|
ExprAST *Operand;
|
|
|
|
public:
|
|
|
|
UnaryExprAST(char opcode, ExprAST *operand)
|
|
|
|
: Opcode(opcode), Operand(operand) {}
|
|
|
|
virtual Value *Codegen();
|
|
|
|
};
|
|
|
|
</pre>
|
|
|
|
</div>
|
2007-11-01 06:49:54 +00:00
|
|
|
|
2007-11-02 05:42:52 +00:00
|
|
|
<p>This AST node is very simple and obvious by now. It directly mirrors the
|
|
|
|
binary operator AST node, except that it only has one child. With this, we
|
|
|
|
need to add the parsing logic. Parsing a unary operator is pretty simple: we'll
|
|
|
|
add a new function to do it:</p>
|
2007-11-01 06:49:54 +00:00
|
|
|
|
2007-11-02 05:42:52 +00:00
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
/// unary
|
|
|
|
/// ::= primary
|
|
|
|
/// ::= '!' unary
|
|
|
|
static ExprAST *ParseUnary() {
|
|
|
|
// If the current token is not an operator, it must be a primary expr.
|
|
|
|
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
|
|
|
|
return ParsePrimary();
|
|
|
|
|
|
|
|
// If this is a unary operator, read it.
|
|
|
|
int Opc = CurTok;
|
|
|
|
getNextToken();
|
|
|
|
if (ExprAST *Operand = ParseUnary())
|
|
|
|
return new UnaryExprAST(Opc, Operand);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<p>The grammar we add is pretty straight-forward here. If we see a unary
|
|
|
|
operator when parsing a primary operator, we eat the operator as a prefix and
|
|
|
|
parse the remaining piece as another unary operator. This allows us to handle
|
|
|
|
multiple unary operators (e.g. "!!x"). Note that unary operators can't have
|
|
|
|
ambiguous parses like binary operators can, so there is no need for precedence
|
|
|
|
information.</p>
|
|
|
|
|
|
|
|
<p>The problem with the above is that we need to call ParseUnary from somewhere.
|
|
|
|
To do this, we change previous callers of ParsePrimary to call ParseUnary
|
|
|
|
instead:</p>
|
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
/// binoprhs
|
|
|
|
/// ::= ('+' unary)*
|
|
|
|
static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
|
|
|
|
...
|
|
|
|
<b>// Parse the unary expression after the binary operator.
|
|
|
|
ExprAST *RHS = ParseUnary();
|
|
|
|
if (!RHS) return 0;</b>
|
|
|
|
...
|
|
|
|
}
|
|
|
|
/// expression
|
|
|
|
/// ::= unary binoprhs
|
|
|
|
///
|
|
|
|
static ExprAST *ParseExpression() {
|
|
|
|
<b>ExprAST *LHS = ParseUnary();</b>
|
|
|
|
if (!LHS) return 0;
|
|
|
|
|
|
|
|
return ParseBinOpRHS(0, LHS);
|
|
|
|
}
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<p>With these two simple changes, we now parse unary operators and build the
|
|
|
|
AST for them. Next up, we need to add parser support for prototypes, to parse
|
|
|
|
the unary operator prototype. We extend the binary operator code above
|
|
|
|
with:</p>
|
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
/// prototype
|
|
|
|
/// ::= id '(' id* ')'
|
|
|
|
/// ::= binary LETTER number? (id, id)
|
|
|
|
<b>/// ::= unary LETTER (id)</b>
|
|
|
|
static PrototypeAST *ParsePrototype() {
|
|
|
|
std::string FnName;
|
|
|
|
|
|
|
|
int Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
|
|
|
|
unsigned BinaryPrecedence = 30;
|
|
|
|
|
|
|
|
switch (CurTok) {
|
|
|
|
default:
|
|
|
|
return ErrorP("Expected function name in prototype");
|
|
|
|
case tok_identifier:
|
|
|
|
FnName = IdentifierStr;
|
|
|
|
Kind = 0;
|
|
|
|
getNextToken();
|
|
|
|
break;
|
|
|
|
<b>case tok_unary:
|
|
|
|
getNextToken();
|
|
|
|
if (!isascii(CurTok))
|
|
|
|
return ErrorP("Expected unary operator");
|
|
|
|
FnName = "unary";
|
|
|
|
FnName += (char)CurTok;
|
|
|
|
Kind = 1;
|
|
|
|
getNextToken();
|
|
|
|
break;</b>
|
|
|
|
case tok_binary:
|
|
|
|
...
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<p>As with binary operators, we name unary operators with a name that includes
|
|
|
|
the operator character. This assists us at code generation time. Speaking of,
|
|
|
|
the final piece we need to add is codegen support for unary operators. It looks
|
|
|
|
like this:</p>
|
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
Value *UnaryExprAST::Codegen() {
|
|
|
|
Value *OperandV = Operand->Codegen();
|
|
|
|
if (OperandV == 0) return 0;
|
|
|
|
|
|
|
|
Function *F = TheModule->getFunction(std::string("unary")+Opcode);
|
|
|
|
if (F == 0)
|
|
|
|
return ErrorV("Unknown unary operator");
|
|
|
|
|
|
|
|
return Builder.CreateCall(F, OperandV, "unop");
|
|
|
|
}
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<p>This code is similar to, but simpler than, the code for binary operators. It
|
|
|
|
is simpler primarily because it doesn't need to handle any predefined operators.
|
|
|
|
</p>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
|
|
|
<div class="doc_section"><a name="example">Kicking the Tires</a></div>
|
|
|
|
<!-- *********************************************************************** -->
|
|
|
|
|
|
|
|
<div class="doc_text">
|
|
|
|
|
|
|
|
<p>It is somewhat hard to believe, but with a few simple extensions we've
|
2007-11-02 05:54:25 +00:00
|
|
|
covered in the last chapters, we have grown a real-ish language. With this, we
|
2007-11-02 05:42:52 +00:00
|
|
|
can do a lot of interesting things, including I/O, math, and a bunch of other
|
|
|
|
things. For example, we can now add a nice sequencing operator (printd is
|
|
|
|
defined to print out the specified value and a newline):</p>
|
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
ready> <b>extern printd(x);</b>
|
|
|
|
Read extern: declare double @printd(double)
|
|
|
|
ready> <b>def binary : 1 (x y) 0; # Low-precedence operator that ignores operands.</b>
|
|
|
|
..
|
|
|
|
ready> <b>printd(123) : printd(456) : printd(789);</b>
|
|
|
|
123.000000
|
|
|
|
456.000000
|
|
|
|
789.000000
|
|
|
|
Evaluated to 0.000000
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
2007-11-02 05:54:25 +00:00
|
|
|
<p>We can also define a bunch of other "primitive" operations, such as:</p>
|
2007-11-02 05:42:52 +00:00
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
# Logical unary not.
|
|
|
|
def unary!(v)
|
|
|
|
if v then
|
|
|
|
0
|
|
|
|
else
|
|
|
|
1;
|
|
|
|
|
|
|
|
# Unary negate.
|
|
|
|
def unary-(v)
|
|
|
|
0-v;
|
|
|
|
|
|
|
|
# Define > with the same precedence as >. We could also easily define
|
|
|
|
# <= etc.
|
|
|
|
def binary> 10 (LHS RHS)
|
|
|
|
!(LHS < RHS);
|
|
|
|
|
|
|
|
# Binary logical or, which does not short circuit.
|
|
|
|
def binary| 5 (LHS RHS)
|
|
|
|
if LHS then
|
|
|
|
1
|
|
|
|
else if RHS then
|
|
|
|
1
|
|
|
|
else
|
|
|
|
0;
|
|
|
|
|
|
|
|
# Binary logical and, which does not short circuit.
|
|
|
|
def binary& 6 (LHS RHS)
|
|
|
|
if !LHS then
|
|
|
|
0
|
|
|
|
else
|
|
|
|
!!RHS;
|
|
|
|
|
|
|
|
# Define = with slightly lower precedence than relationals.
|
|
|
|
def binary = 9 (LHS RHS)
|
|
|
|
!(LHS < RHS | LHS > RHS);
|
|
|
|
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
<p>Given the previous if/then/else support, we can also define interesting
|
|
|
|
functions for I/O. For example, the following prints out a character whose
|
|
|
|
"density" reflects the value passed in: the lower the value, the denser the
|
|
|
|
character:</p>
|
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
ready>
|
|
|
|
<b>
|
|
|
|
extern putchard(char)
|
|
|
|
def printdensity(d)
|
|
|
|
if d > 8 then
|
|
|
|
putchard(32) # ' '
|
|
|
|
else if d > 4 then
|
|
|
|
putchard(46) # '.'
|
|
|
|
else if d > 2 then
|
|
|
|
putchard(43) # '+'
|
|
|
|
else
|
|
|
|
putchard(42); # '*'</b>
|
|
|
|
...
|
|
|
|
ready> <b>printdensity(1): printdensity(2): printdensity(3) :
|
|
|
|
printdensity(4): printdensity(5): printdensity(9): putchard(10);</b>
|
|
|
|
*++..
|
|
|
|
Evaluated to 0.000000
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<p>Based on these simple primitive operations, we can start to define more
|
|
|
|
interesting things. For example, here's a little function that solves for the
|
|
|
|
number of iterations it takes for a function in the complex plane to
|
|
|
|
converge:</p>
|
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
# determine whether the specific location diverges.
|
|
|
|
# Solve for z = z^2 + c in the complex plane.
|
|
|
|
def mandleconverger(real imag iters creal cimag)
|
|
|
|
if iters > 255 | (real*real + imag*imag > 4) then
|
|
|
|
iters
|
|
|
|
else
|
|
|
|
mandleconverger(real*real - imag*imag + creal,
|
|
|
|
2*real*imag + cimag,
|
|
|
|
iters+1, creal, cimag);
|
|
|
|
|
|
|
|
# return the number of iterations required for the iteration to escape
|
|
|
|
def mandleconverge(real imag)
|
|
|
|
mandleconverger(real, imag, 0, real, imag);
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
2007-11-02 05:54:25 +00:00
|
|
|
<p>This "z = z<sup>2</sup> + c" function is a beautiful little creature that is the basis
|
2007-11-02 05:42:52 +00:00
|
|
|
for computation of the <a
|
|
|
|
href="http://en.wikipedia.org/wiki/Mandelbrot_set">Mandelbrot Set</a>. Our
|
|
|
|
<tt>mandelconverge</tt> function returns the number of iterations that it takes
|
|
|
|
for a complex orbit to escape, saturating to 255. This is not a very useful
|
|
|
|
function by itself, but if you plot its value over a two-dimensional plane,
|
|
|
|
you can see the mandelbrot set. Given that we are limited to using putchard
|
|
|
|
here, our amazing graphical output is limited, but we can whip together
|
|
|
|
something using the density plotter above:</p>
|
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
# compute and plot the mandlebrot set with the specified 2 dimentional range
|
|
|
|
# info.
|
|
|
|
def mandelhelp(xmin xmax xstep ymin ymax ystep)
|
|
|
|
for y = ymin, y < ymax, ystep in (
|
|
|
|
(for x = xmin, x < xmax, xstep in
|
|
|
|
printdensity(mandleconverge(x,y)))
|
|
|
|
: putchard(10)
|
|
|
|
)
|
|
|
|
|
|
|
|
# mandel - This is a convenient helper function for ploting the mandelbrot set
|
|
|
|
# from the specified position with the specified magnification.
|
|
|
|
def mandel(realstart imagstart realmag imagmag)
|
|
|
|
mandelhelp(realstart, realstart+realmag*78, realmag,
|
|
|
|
imagstart, imagstart+imagmag*40, imagmag);
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<p>Given this, we can try plotting out the mandlebrot set! Lets try it out:</p>
|
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
ready> <b>mandel(-2.3, -1.3, 0.05, 0.07);</b>
|
|
|
|
*******************************+++++++++++*************************************
|
|
|
|
*************************+++++++++++++++++++++++*******************************
|
|
|
|
**********************+++++++++++++++++++++++++++++****************************
|
|
|
|
*******************+++++++++++++++++++++.. ...++++++++*************************
|
|
|
|
*****************++++++++++++++++++++++.... ...+++++++++***********************
|
|
|
|
***************+++++++++++++++++++++++..... ...+++++++++*********************
|
|
|
|
**************+++++++++++++++++++++++.... ....+++++++++********************
|
|
|
|
*************++++++++++++++++++++++...... .....++++++++*******************
|
|
|
|
************+++++++++++++++++++++....... .......+++++++******************
|
|
|
|
***********+++++++++++++++++++.... ... .+++++++*****************
|
|
|
|
**********+++++++++++++++++....... .+++++++****************
|
|
|
|
*********++++++++++++++........... ...+++++++***************
|
|
|
|
********++++++++++++............ ...++++++++**************
|
|
|
|
********++++++++++... .......... .++++++++**************
|
|
|
|
*******+++++++++..... .+++++++++*************
|
|
|
|
*******++++++++...... ..+++++++++*************
|
|
|
|
*******++++++....... ..+++++++++*************
|
|
|
|
*******+++++...... ..+++++++++*************
|
|
|
|
*******.... .... ...+++++++++*************
|
|
|
|
*******.... . ...+++++++++*************
|
|
|
|
*******+++++...... ...+++++++++*************
|
|
|
|
*******++++++....... ..+++++++++*************
|
|
|
|
*******++++++++...... .+++++++++*************
|
|
|
|
*******+++++++++..... ..+++++++++*************
|
|
|
|
********++++++++++... .......... .++++++++**************
|
|
|
|
********++++++++++++............ ...++++++++**************
|
|
|
|
*********++++++++++++++.......... ...+++++++***************
|
|
|
|
**********++++++++++++++++........ .+++++++****************
|
|
|
|
**********++++++++++++++++++++.... ... ..+++++++****************
|
|
|
|
***********++++++++++++++++++++++....... .......++++++++*****************
|
|
|
|
************+++++++++++++++++++++++...... ......++++++++******************
|
|
|
|
**************+++++++++++++++++++++++.... ....++++++++********************
|
|
|
|
***************+++++++++++++++++++++++..... ...+++++++++*********************
|
|
|
|
*****************++++++++++++++++++++++.... ...++++++++***********************
|
|
|
|
*******************+++++++++++++++++++++......++++++++*************************
|
|
|
|
*********************++++++++++++++++++++++.++++++++***************************
|
|
|
|
*************************+++++++++++++++++++++++*******************************
|
|
|
|
******************************+++++++++++++************************************
|
|
|
|
*******************************************************************************
|
|
|
|
*******************************************************************************
|
|
|
|
*******************************************************************************
|
|
|
|
Evaluated to 0.000000
|
|
|
|
ready> <b>mandel(-2, -1, 0.02, 0.04);</b>
|
|
|
|
**************************+++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
*********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.
|
|
|
|
*******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++...
|
|
|
|
*****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....
|
|
|
|
***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........
|
|
|
|
**************++++++++++++++++++++++++++++++++++++++++++++++++++++++...........
|
|
|
|
************+++++++++++++++++++++++++++++++++++++++++++++++++++++..............
|
|
|
|
***********++++++++++++++++++++++++++++++++++++++++++++++++++........ .
|
|
|
|
**********++++++++++++++++++++++++++++++++++++++++++++++.............
|
|
|
|
********+++++++++++++++++++++++++++++++++++++++++++..................
|
|
|
|
*******+++++++++++++++++++++++++++++++++++++++.......................
|
|
|
|
******+++++++++++++++++++++++++++++++++++...........................
|
|
|
|
*****++++++++++++++++++++++++++++++++............................
|
|
|
|
*****++++++++++++++++++++++++++++...............................
|
|
|
|
****++++++++++++++++++++++++++...... .........................
|
|
|
|
***++++++++++++++++++++++++......... ...... ...........
|
|
|
|
***++++++++++++++++++++++............
|
|
|
|
**+++++++++++++++++++++..............
|
|
|
|
**+++++++++++++++++++................
|
|
|
|
*++++++++++++++++++.................
|
|
|
|
*++++++++++++++++............ ...
|
|
|
|
*++++++++++++++..............
|
|
|
|
*+++....++++................
|
|
|
|
*.......... ...........
|
|
|
|
*
|
|
|
|
*.......... ...........
|
|
|
|
*+++....++++................
|
|
|
|
*++++++++++++++..............
|
|
|
|
*++++++++++++++++............ ...
|
|
|
|
*++++++++++++++++++.................
|
|
|
|
**+++++++++++++++++++................
|
|
|
|
**+++++++++++++++++++++..............
|
|
|
|
***++++++++++++++++++++++............
|
|
|
|
***++++++++++++++++++++++++......... ...... ...........
|
|
|
|
****++++++++++++++++++++++++++...... .........................
|
|
|
|
*****++++++++++++++++++++++++++++...............................
|
|
|
|
*****++++++++++++++++++++++++++++++++............................
|
|
|
|
******+++++++++++++++++++++++++++++++++++...........................
|
|
|
|
*******+++++++++++++++++++++++++++++++++++++++.......................
|
|
|
|
********+++++++++++++++++++++++++++++++++++++++++++..................
|
|
|
|
Evaluated to 0.000000
|
|
|
|
ready> <b>mandel(-0.9, -1.4, 0.02, 0.03);</b>
|
|
|
|
*******************************************************************************
|
|
|
|
*******************************************************************************
|
|
|
|
*******************************************************************************
|
|
|
|
**********+++++++++++++++++++++************************************************
|
|
|
|
*+++++++++++++++++++++++++++++++++++++++***************************************
|
|
|
|
+++++++++++++++++++++++++++++++++++++++++++++**********************************
|
|
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++*****************************
|
|
|
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++*************************
|
|
|
|
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++**********************
|
|
|
|
+++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
|
|
|
|
+++++++++++++++++++++++++++++++.... ......+++++++++++++++++++****************
|
|
|
|
+++++++++++++++++++++++++++++....... ........+++++++++++++++++++**************
|
|
|
|
++++++++++++++++++++++++++++........ ........++++++++++++++++++++************
|
|
|
|
+++++++++++++++++++++++++++......... .. ...+++++++++++++++++++++**********
|
|
|
|
++++++++++++++++++++++++++........... ....++++++++++++++++++++++********
|
|
|
|
++++++++++++++++++++++++............. .......++++++++++++++++++++++******
|
|
|
|
+++++++++++++++++++++++............. ........+++++++++++++++++++++++****
|
|
|
|
++++++++++++++++++++++........... ..........++++++++++++++++++++++***
|
|
|
|
++++++++++++++++++++........... .........++++++++++++++++++++++*
|
|
|
|
++++++++++++++++++............ ...........++++++++++++++++++++
|
|
|
|
++++++++++++++++............... .............++++++++++++++++++
|
|
|
|
++++++++++++++................. ...............++++++++++++++++
|
|
|
|
++++++++++++.................. .................++++++++++++++
|
|
|
|
+++++++++.................. .................+++++++++++++
|
|
|
|
++++++........ . ......... ..++++++++++++
|
|
|
|
++............ ...... ....++++++++++
|
|
|
|
.............. ...++++++++++
|
|
|
|
.............. ....+++++++++
|
|
|
|
.............. .....++++++++
|
|
|
|
............. ......++++++++
|
|
|
|
........... .......++++++++
|
|
|
|
......... ........+++++++
|
|
|
|
......... ........+++++++
|
|
|
|
......... ....+++++++
|
|
|
|
........ ...+++++++
|
|
|
|
....... ...+++++++
|
|
|
|
....+++++++
|
|
|
|
.....+++++++
|
|
|
|
....+++++++
|
|
|
|
....+++++++
|
|
|
|
....+++++++
|
|
|
|
Evaluated to 0.000000
|
|
|
|
ready> <b>^D</b>
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<p>At this point, you may be starting to realize that Kaleidoscope is a real
|
|
|
|
and powerful language. It may not be self-similar :), but it can be used to
|
|
|
|
plot things that are!</p>
|
|
|
|
|
|
|
|
<p>With this, we conclude the "adding user-defined operators" chapter of the
|
|
|
|
tutorial. We successfully extended our language with the ability to extend the
|
|
|
|
language in the library, and showed how this can be used to build a simple but
|
|
|
|
interesting end user application in Kaleidoscope. At this point, Kaleidoscope
|
|
|
|
can build a variety of applications that are functional and can call functions
|
2007-11-02 05:54:25 +00:00
|
|
|
with side-effects, but it can't actually define and mutate a variable itself.
|
2007-11-02 05:42:52 +00:00
|
|
|
</p>
|
|
|
|
|
|
|
|
<p>Strikingly, lack of this feature is an important limitation for some
|
|
|
|
languages, and it is not at all obvious how to <a href="LangImpl7.html">add
|
|
|
|
support for mutable variables</a> without having to add an "SSA construction"
|
|
|
|
phase to your front-end. In the next chapter, we will describe how you can
|
|
|
|
add this without building SSA in your front-end.</p>
|
2007-11-01 06:49:54 +00:00
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
|
|
|
<div class="doc_section"><a name="code">Full Code Listing</a></div>
|
|
|
|
<!-- *********************************************************************** -->
|
|
|
|
|
|
|
|
<div class="doc_text">
|
|
|
|
|
|
|
|
<p>
|
|
|
|
Here is the complete code listing for our running example, enhanced with the
|
|
|
|
if/then/else and for expressions.. To build this example, use:
|
|
|
|
</p>
|
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
|
|
|
# Compile
|
|
|
|
g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
|
|
|
|
# Run
|
|
|
|
./toy
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<p>Here is the code:</p>
|
|
|
|
|
|
|
|
<div class="doc_code">
|
|
|
|
<pre>
|
2007-11-02 05:42:52 +00:00
|
|
|
#include "llvm/DerivedTypes.h"
|
|
|
|
#include "llvm/ExecutionEngine/ExecutionEngine.h"
|
|
|
|
#include "llvm/Module.h"
|
|
|
|
#include "llvm/ModuleProvider.h"
|
|
|
|
#include "llvm/PassManager.h"
|
|
|
|
#include "llvm/Analysis/Verifier.h"
|
|
|
|
#include "llvm/Target/TargetData.h"
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
|
|
#include "llvm/Support/LLVMBuilder.h"
|
|
|
|
#include <cstdio>
|
|
|
|
#include <string>
|
|
|
|
#include <map>
|
|
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Lexer
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
|
|
|
|
// of these for known things.
|
|
|
|
enum Token {
|
|
|
|
tok_eof = -1,
|
|
|
|
|
|
|
|
// commands
|
|
|
|
tok_def = -2, tok_extern = -3,
|
|
|
|
|
|
|
|
// primary
|
|
|
|
tok_identifier = -4, tok_number = -5,
|
|
|
|
|
|
|
|
// control
|
|
|
|
tok_if = -6, tok_then = -7, tok_else = -8,
|
|
|
|
tok_for = -9, tok_in = -10,
|
|
|
|
|
|
|
|
// operators
|
|
|
|
tok_binary = -11, tok_unary = -12
|
|
|
|
};
|
|
|
|
|
|
|
|
static std::string IdentifierStr; // Filled in if tok_identifier
|
|
|
|
static double NumVal; // Filled in if tok_number
|
|
|
|
|
|
|
|
/// gettok - Return the next token from standard input.
|
|
|
|
static int gettok() {
|
|
|
|
static int LastChar = ' ';
|
|
|
|
|
|
|
|
// Skip any whitespace.
|
|
|
|
while (isspace(LastChar))
|
|
|
|
LastChar = getchar();
|
|
|
|
|
|
|
|
if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
|
|
|
|
IdentifierStr = LastChar;
|
|
|
|
while (isalnum((LastChar = getchar())))
|
|
|
|
IdentifierStr += LastChar;
|
|
|
|
|
|
|
|
if (IdentifierStr == "def") return tok_def;
|
|
|
|
if (IdentifierStr == "extern") return tok_extern;
|
|
|
|
if (IdentifierStr == "if") return tok_if;
|
|
|
|
if (IdentifierStr == "then") return tok_then;
|
|
|
|
if (IdentifierStr == "else") return tok_else;
|
|
|
|
if (IdentifierStr == "for") return tok_for;
|
|
|
|
if (IdentifierStr == "in") return tok_in;
|
|
|
|
if (IdentifierStr == "binary") return tok_binary;
|
|
|
|
if (IdentifierStr == "unary") return tok_unary;
|
|
|
|
return tok_identifier;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
|
|
|
|
std::string NumStr;
|
|
|
|
do {
|
|
|
|
NumStr += LastChar;
|
|
|
|
LastChar = getchar();
|
|
|
|
} while (isdigit(LastChar) || LastChar == '.');
|
|
|
|
|
|
|
|
NumVal = strtod(NumStr.c_str(), 0);
|
|
|
|
return tok_number;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (LastChar == '#') {
|
|
|
|
// Comment until end of line.
|
|
|
|
do LastChar = getchar();
|
|
|
|
while (LastChar != EOF && LastChar != '\n' & LastChar != '\r');
|
|
|
|
|
|
|
|
if (LastChar != EOF)
|
|
|
|
return gettok();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check for end of file. Don't eat the EOF.
|
|
|
|
if (LastChar == EOF)
|
|
|
|
return tok_eof;
|
|
|
|
|
|
|
|
// Otherwise, just return the character as its ascii value.
|
|
|
|
int ThisChar = LastChar;
|
|
|
|
LastChar = getchar();
|
|
|
|
return ThisChar;
|
|
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Abstract Syntax Tree (aka Parse Tree)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
/// ExprAST - Base class for all expression nodes.
|
|
|
|
class ExprAST {
|
|
|
|
public:
|
|
|
|
virtual ~ExprAST() {}
|
|
|
|
virtual Value *Codegen() = 0;
|
|
|
|
};
|
|
|
|
|
|
|
|
/// NumberExprAST - Expression class for numeric literals like "1.0".
|
|
|
|
class NumberExprAST : public ExprAST {
|
|
|
|
double Val;
|
|
|
|
public:
|
|
|
|
NumberExprAST(double val) : Val(val) {}
|
|
|
|
virtual Value *Codegen();
|
|
|
|
};
|
|
|
|
|
|
|
|
/// VariableExprAST - Expression class for referencing a variable, like "a".
|
|
|
|
class VariableExprAST : public ExprAST {
|
|
|
|
std::string Name;
|
|
|
|
public:
|
|
|
|
VariableExprAST(const std::string &name) : Name(name) {}
|
|
|
|
virtual Value *Codegen();
|
|
|
|
};
|
|
|
|
|
|
|
|
/// UnaryExprAST - Expression class for a unary operator.
|
|
|
|
class UnaryExprAST : public ExprAST {
|
|
|
|
char Opcode;
|
|
|
|
ExprAST *Operand;
|
|
|
|
public:
|
|
|
|
UnaryExprAST(char opcode, ExprAST *operand)
|
|
|
|
: Opcode(opcode), Operand(operand) {}
|
|
|
|
virtual Value *Codegen();
|
|
|
|
};
|
|
|
|
|
|
|
|
/// BinaryExprAST - Expression class for a binary operator.
|
|
|
|
class BinaryExprAST : public ExprAST {
|
|
|
|
char Op;
|
|
|
|
ExprAST *LHS, *RHS;
|
|
|
|
public:
|
|
|
|
BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
|
|
|
|
: Op(op), LHS(lhs), RHS(rhs) {}
|
|
|
|
virtual Value *Codegen();
|
|
|
|
};
|
|
|
|
|
|
|
|
/// CallExprAST - Expression class for function calls.
|
|
|
|
class CallExprAST : public ExprAST {
|
|
|
|
std::string Callee;
|
|
|
|
std::vector<ExprAST*> Args;
|
|
|
|
public:
|
|
|
|
CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
|
|
|
|
: Callee(callee), Args(args) {}
|
|
|
|
virtual Value *Codegen();
|
|
|
|
};
|
|
|
|
|
|
|
|
/// IfExprAST - Expression class for if/then/else.
|
|
|
|
class IfExprAST : public ExprAST {
|
|
|
|
ExprAST *Cond, *Then, *Else;
|
|
|
|
public:
|
|
|
|
IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
|
|
|
|
: Cond(cond), Then(then), Else(_else) {}
|
|
|
|
virtual Value *Codegen();
|
|
|
|
};
|
|
|
|
|
|
|
|
/// ForExprAST - Expression class for for/in.
|
|
|
|
class ForExprAST : public ExprAST {
|
|
|
|
std::string VarName;
|
|
|
|
ExprAST *Start, *End, *Step, *Body;
|
|
|
|
public:
|
|
|
|
ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
|
|
|
|
ExprAST *step, ExprAST *body)
|
|
|
|
: VarName(varname), Start(start), End(end), Step(step), Body(body) {}
|
|
|
|
virtual Value *Codegen();
|
|
|
|
};
|
|
|
|
|
|
|
|
/// PrototypeAST - This class represents the "prototype" for a function,
|
|
|
|
/// which captures its argument names as well as if it is an operator.
|
|
|
|
class PrototypeAST {
|
|
|
|
std::string Name;
|
|
|
|
std::vector<std::string> Args;
|
|
|
|
bool isOperator;
|
|
|
|
unsigned Precedence; // Precedence if a binary op.
|
|
|
|
public:
|
|
|
|
PrototypeAST(const std::string &name, const std::vector<std::string> &args,
|
|
|
|
bool isoperator = false, unsigned prec = 0)
|
|
|
|
: Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
|
|
|
|
|
|
|
|
bool isUnaryOp() const { return isOperator && Args.size() == 1; }
|
|
|
|
bool isBinaryOp() const { return isOperator && Args.size() == 2; }
|
|
|
|
|
|
|
|
char getOperatorName() const {
|
|
|
|
assert(isUnaryOp() || isBinaryOp());
|
|
|
|
return Name[Name.size()-1];
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned getBinaryPrecedence() const { return Precedence; }
|
|
|
|
|
|
|
|
Function *Codegen();
|
|
|
|
};
|
|
|
|
|
|
|
|
/// FunctionAST - This class represents a function definition itself.
|
|
|
|
class FunctionAST {
|
|
|
|
PrototypeAST *Proto;
|
|
|
|
ExprAST *Body;
|
|
|
|
public:
|
|
|
|
FunctionAST(PrototypeAST *proto, ExprAST *body)
|
|
|
|
: Proto(proto), Body(body) {}
|
|
|
|
|
|
|
|
Function *Codegen();
|
|
|
|
};
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Parser
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
|
|
|
|
/// token the parser it looking at. getNextToken reads another token from the
|
|
|
|
/// lexer and updates CurTok with its results.
|
|
|
|
static int CurTok;
|
|
|
|
static int getNextToken() {
|
|
|
|
return CurTok = gettok();
|
|
|
|
}
|
|
|
|
|
|
|
|
/// BinopPrecedence - This holds the precedence for each binary operator that is
|
|
|
|
/// defined.
|
|
|
|
static std::map<char, int> BinopPrecedence;
|
|
|
|
|
|
|
|
/// GetTokPrecedence - Get the precedence of the pending binary operator token.
|
|
|
|
static int GetTokPrecedence() {
|
|
|
|
if (!isascii(CurTok))
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
// Make sure it's a declared binop.
|
|
|
|
int TokPrec = BinopPrecedence[CurTok];
|
|
|
|
if (TokPrec <= 0) return -1;
|
|
|
|
return TokPrec;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Error* - These are little helper functions for error handling.
|
|
|
|
ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
|
|
|
|
PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
|
|
|
|
FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
|
|
|
|
|
|
|
|
static ExprAST *ParseExpression();
|
|
|
|
|
|
|
|
/// identifierexpr
|
|
|
|
/// ::= identifer
|
|
|
|
/// ::= identifer '(' expression* ')'
|
|
|
|
static ExprAST *ParseIdentifierExpr() {
|
|
|
|
std::string IdName = IdentifierStr;
|
|
|
|
|
|
|
|
getNextToken(); // eat identifer.
|
|
|
|
|
|
|
|
if (CurTok != '(') // Simple variable ref.
|
|
|
|
return new VariableExprAST(IdName);
|
|
|
|
|
|
|
|
// Call.
|
|
|
|
getNextToken(); // eat (
|
|
|
|
std::vector<ExprAST*> Args;
|
|
|
|
if (CurTok != ')') {
|
|
|
|
while (1) {
|
|
|
|
ExprAST *Arg = ParseExpression();
|
|
|
|
if (!Arg) return 0;
|
|
|
|
Args.push_back(Arg);
|
|
|
|
|
|
|
|
if (CurTok == ')') break;
|
|
|
|
|
|
|
|
if (CurTok != ',')
|
|
|
|
return Error("Expected ')'");
|
|
|
|
getNextToken();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Eat the ')'.
|
|
|
|
getNextToken();
|
|
|
|
|
|
|
|
return new CallExprAST(IdName, Args);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// numberexpr ::= number
|
|
|
|
static ExprAST *ParseNumberExpr() {
|
|
|
|
ExprAST *Result = new NumberExprAST(NumVal);
|
|
|
|
getNextToken(); // consume the number
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// parenexpr ::= '(' expression ')'
|
|
|
|
static ExprAST *ParseParenExpr() {
|
|
|
|
getNextToken(); // eat (.
|
|
|
|
ExprAST *V = ParseExpression();
|
|
|
|
if (!V) return 0;
|
|
|
|
|
|
|
|
if (CurTok != ')')
|
|
|
|
return Error("expected ')'");
|
|
|
|
getNextToken(); // eat ).
|
|
|
|
return V;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
|
|
|
|
static ExprAST *ParseIfExpr() {
|
|
|
|
getNextToken(); // eat the if.
|
|
|
|
|
|
|
|
// condition.
|
|
|
|
ExprAST *Cond = ParseExpression();
|
|
|
|
if (!Cond) return 0;
|
|
|
|
|
|
|
|
if (CurTok != tok_then)
|
|
|
|
return Error("expected then");
|
|
|
|
getNextToken(); // eat the then
|
|
|
|
|
|
|
|
ExprAST *Then = ParseExpression();
|
|
|
|
if (Then == 0) return 0;
|
|
|
|
|
|
|
|
if (CurTok != tok_else)
|
|
|
|
return Error("expected else");
|
|
|
|
|
|
|
|
getNextToken();
|
|
|
|
|
|
|
|
ExprAST *Else = ParseExpression();
|
|
|
|
if (!Else) return 0;
|
|
|
|
|
|
|
|
return new IfExprAST(Cond, Then, Else);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// forexpr ::= 'for' identifer '=' expr ',' expr (',' expr)? 'in' expression
|
|
|
|
static ExprAST *ParseForExpr() {
|
|
|
|
getNextToken(); // eat the for.
|
|
|
|
|
|
|
|
if (CurTok != tok_identifier)
|
|
|
|
return Error("expected identifier after for");
|
|
|
|
|
|
|
|
std::string IdName = IdentifierStr;
|
|
|
|
getNextToken(); // eat identifer.
|
|
|
|
|
|
|
|
if (CurTok != '=')
|
|
|
|
return Error("expected '=' after for");
|
|
|
|
getNextToken(); // eat '='.
|
|
|
|
|
|
|
|
|
|
|
|
ExprAST *Start = ParseExpression();
|
|
|
|
if (Start == 0) return 0;
|
|
|
|
if (CurTok != ',')
|
|
|
|
return Error("expected ',' after for start value");
|
|
|
|
getNextToken();
|
|
|
|
|
|
|
|
ExprAST *End = ParseExpression();
|
|
|
|
if (End == 0) return 0;
|
|
|
|
|
|
|
|
// The step value is optional.
|
|
|
|
ExprAST *Step = 0;
|
|
|
|
if (CurTok == ',') {
|
|
|
|
getNextToken();
|
|
|
|
Step = ParseExpression();
|
|
|
|
if (Step == 0) return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (CurTok != tok_in)
|
|
|
|
return Error("expected 'in' after for");
|
|
|
|
getNextToken(); // eat 'in'.
|
|
|
|
|
|
|
|
ExprAST *Body = ParseExpression();
|
|
|
|
if (Body == 0) return 0;
|
|
|
|
|
|
|
|
return new ForExprAST(IdName, Start, End, Step, Body);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// primary
|
|
|
|
/// ::= identifierexpr
|
|
|
|
/// ::= numberexpr
|
|
|
|
/// ::= parenexpr
|
|
|
|
/// ::= ifexpr
|
|
|
|
/// ::= forexpr
|
|
|
|
static ExprAST *ParsePrimary() {
|
|
|
|
switch (CurTok) {
|
|
|
|
default: return Error("unknown token when expecting an expression");
|
|
|
|
case tok_identifier: return ParseIdentifierExpr();
|
|
|
|
case tok_number: return ParseNumberExpr();
|
|
|
|
case '(': return ParseParenExpr();
|
|
|
|
case tok_if: return ParseIfExpr();
|
|
|
|
case tok_for: return ParseForExpr();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// unary
|
|
|
|
/// ::= primary
|
|
|
|
/// ::= '!' unary
|
|
|
|
static ExprAST *ParseUnary() {
|
|
|
|
// If the current token is not an operator, it must be a primary expr.
|
|
|
|
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
|
|
|
|
return ParsePrimary();
|
|
|
|
|
|
|
|
// If this is a unary operator, read it.
|
|
|
|
int Opc = CurTok;
|
|
|
|
getNextToken();
|
|
|
|
if (ExprAST *Operand = ParseUnary())
|
|
|
|
return new UnaryExprAST(Opc, Operand);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// binoprhs
|
|
|
|
/// ::= ('+' unary)*
|
|
|
|
static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
|
|
|
|
// If this is a binop, find its precedence.
|
|
|
|
while (1) {
|
|
|
|
int TokPrec = GetTokPrecedence();
|
|
|
|
|
|
|
|
// If this is a binop that binds at least as tightly as the current binop,
|
|
|
|
// consume it, otherwise we are done.
|
|
|
|
if (TokPrec < ExprPrec)
|
|
|
|
return LHS;
|
|
|
|
|
|
|
|
// Okay, we know this is a binop.
|
|
|
|
int BinOp = CurTok;
|
|
|
|
getNextToken(); // eat binop
|
|
|
|
|
|
|
|
// Parse the unary expression after the binary operator.
|
|
|
|
ExprAST *RHS = ParseUnary();
|
|
|
|
if (!RHS) return 0;
|
|
|
|
|
|
|
|
// If BinOp binds less tightly with RHS than the operator after RHS, let
|
|
|
|
// the pending operator take RHS as its LHS.
|
|
|
|
int NextPrec = GetTokPrecedence();
|
|
|
|
if (TokPrec < NextPrec) {
|
|
|
|
RHS = ParseBinOpRHS(TokPrec+1, RHS);
|
|
|
|
if (RHS == 0) return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Merge LHS/RHS.
|
|
|
|
LHS = new BinaryExprAST(BinOp, LHS, RHS);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// expression
|
|
|
|
/// ::= unary binoprhs
|
|
|
|
///
|
|
|
|
static ExprAST *ParseExpression() {
|
|
|
|
ExprAST *LHS = ParseUnary();
|
|
|
|
if (!LHS) return 0;
|
|
|
|
|
|
|
|
return ParseBinOpRHS(0, LHS);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// prototype
|
|
|
|
/// ::= id '(' id* ')'
|
|
|
|
/// ::= binary LETTER number? (id, id)
|
|
|
|
/// ::= unary LETTER (id)
|
|
|
|
static PrototypeAST *ParsePrototype() {
|
|
|
|
std::string FnName;
|
|
|
|
|
|
|
|
int Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
|
|
|
|
unsigned BinaryPrecedence = 30;
|
|
|
|
|
|
|
|
switch (CurTok) {
|
|
|
|
default:
|
|
|
|
return ErrorP("Expected function name in prototype");
|
|
|
|
case tok_identifier:
|
|
|
|
FnName = IdentifierStr;
|
|
|
|
Kind = 0;
|
|
|
|
getNextToken();
|
|
|
|
break;
|
|
|
|
case tok_unary:
|
|
|
|
getNextToken();
|
|
|
|
if (!isascii(CurTok))
|
|
|
|
return ErrorP("Expected unary operator");
|
|
|
|
FnName = "unary";
|
|
|
|
FnName += (char)CurTok;
|
|
|
|
Kind = 1;
|
|
|
|
getNextToken();
|
|
|
|
break;
|
|
|
|
case tok_binary:
|
|
|
|
getNextToken();
|
|
|
|
if (!isascii(CurTok))
|
|
|
|
return ErrorP("Expected binary operator");
|
|
|
|
FnName = "binary";
|
|
|
|
FnName += (char)CurTok;
|
|
|
|
Kind = 2;
|
|
|
|
getNextToken();
|
|
|
|
|
|
|
|
// Read the precedence if present.
|
|
|
|
if (CurTok == tok_number) {
|
|
|
|
if (NumVal < 1 || NumVal > 100)
|
|
|
|
return ErrorP("Invalid precedecnce: must be 1..100");
|
|
|
|
BinaryPrecedence = (unsigned)NumVal;
|
|
|
|
getNextToken();
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (CurTok != '(')
|
|
|
|
return ErrorP("Expected '(' in prototype");
|
|
|
|
|
|
|
|
std::vector<std::string> ArgNames;
|
|
|
|
while (getNextToken() == tok_identifier)
|
|
|
|
ArgNames.push_back(IdentifierStr);
|
|
|
|
if (CurTok != ')')
|
|
|
|
return ErrorP("Expected ')' in prototype");
|
|
|
|
|
|
|
|
// success.
|
|
|
|
getNextToken(); // eat ')'.
|
|
|
|
|
|
|
|
// Verify right number of names for operator.
|
|
|
|
if (Kind && ArgNames.size() != Kind)
|
|
|
|
return ErrorP("Invalid number of operands for operator");
|
|
|
|
|
|
|
|
return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// definition ::= 'def' prototype expression
|
|
|
|
static FunctionAST *ParseDefinition() {
|
|
|
|
getNextToken(); // eat def.
|
|
|
|
PrototypeAST *Proto = ParsePrototype();
|
|
|
|
if (Proto == 0) return 0;
|
|
|
|
|
|
|
|
if (ExprAST *E = ParseExpression())
|
|
|
|
return new FunctionAST(Proto, E);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// toplevelexpr ::= expression
|
|
|
|
static FunctionAST *ParseTopLevelExpr() {
|
|
|
|
if (ExprAST *E = ParseExpression()) {
|
|
|
|
// Make an anonymous proto.
|
|
|
|
PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
|
|
|
|
return new FunctionAST(Proto, E);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// external ::= 'extern' prototype
|
|
|
|
static PrototypeAST *ParseExtern() {
|
|
|
|
getNextToken(); // eat extern.
|
|
|
|
return ParsePrototype();
|
|
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Code Generation
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
static Module *TheModule;
|
|
|
|
static LLVMFoldingBuilder Builder;
|
|
|
|
static std::map<std::string, Value*> NamedValues;
|
|
|
|
static FunctionPassManager *TheFPM;
|
|
|
|
|
|
|
|
Value *ErrorV(const char *Str) { Error(Str); return 0; }
|
|
|
|
|
|
|
|
Value *NumberExprAST::Codegen() {
|
|
|
|
return ConstantFP::get(Type::DoubleTy, APFloat(Val));
|
|
|
|
}
|
|
|
|
|
|
|
|
Value *VariableExprAST::Codegen() {
|
|
|
|
// Look this variable up in the function.
|
|
|
|
Value *V = NamedValues[Name];
|
|
|
|
return V ? V : ErrorV("Unknown variable name");
|
|
|
|
}
|
|
|
|
|
|
|
|
Value *UnaryExprAST::Codegen() {
|
|
|
|
Value *OperandV = Operand->Codegen();
|
|
|
|
if (OperandV == 0) return 0;
|
|
|
|
|
|
|
|
Function *F = TheModule->getFunction(std::string("unary")+Opcode);
|
|
|
|
if (F == 0)
|
|
|
|
return ErrorV("Unknown unary operator");
|
|
|
|
|
|
|
|
return Builder.CreateCall(F, OperandV, "unop");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Value *BinaryExprAST::Codegen() {
|
|
|
|
Value *L = LHS->Codegen();
|
|
|
|
Value *R = RHS->Codegen();
|
|
|
|
if (L == 0 || R == 0) return 0;
|
|
|
|
|
|
|
|
switch (Op) {
|
|
|
|
case '+': return Builder.CreateAdd(L, R, "addtmp");
|
|
|
|
case '-': return Builder.CreateSub(L, R, "subtmp");
|
|
|
|
case '*': return Builder.CreateMul(L, R, "multmp");
|
|
|
|
case '<':
|
|
|
|
L = Builder.CreateFCmpULT(L, R, "multmp");
|
|
|
|
// Convert bool 0/1 to double 0.0 or 1.0
|
|
|
|
return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp");
|
|
|
|
default: break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If it wasn't a builtin binary operator, it must be a user defined one. Emit
|
|
|
|
// a call to it.
|
|
|
|
Function *F = TheModule->getFunction(std::string("binary")+Op);
|
|
|
|
assert(F && "binary operator not found!");
|
|
|
|
|
|
|
|
Value *Ops[] = { L, R };
|
|
|
|
return Builder.CreateCall(F, Ops, Ops+2, "binop");
|
|
|
|
}
|
|
|
|
|
|
|
|
Value *CallExprAST::Codegen() {
|
|
|
|
// Look up the name in the global module table.
|
|
|
|
Function *CalleeF = TheModule->getFunction(Callee);
|
|
|
|
if (CalleeF == 0)
|
|
|
|
return ErrorV("Unknown function referenced");
|
|
|
|
|
|
|
|
// If argument mismatch error.
|
|
|
|
if (CalleeF->arg_size() != Args.size())
|
|
|
|
return ErrorV("Incorrect # arguments passed");
|
|
|
|
|
|
|
|
std::vector<Value*> ArgsV;
|
|
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
|
|
ArgsV.push_back(Args[i]->Codegen());
|
|
|
|
if (ArgsV.back() == 0) return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
|
|
|
|
}
|
|
|
|
|
|
|
|
Value *IfExprAST::Codegen() {
|
|
|
|
Value *CondV = Cond->Codegen();
|
|
|
|
if (CondV == 0) return 0;
|
|
|
|
|
|
|
|
// Convert condition to a bool by comparing equal to 0.0.
|
|
|
|
CondV = Builder.CreateFCmpONE(CondV,
|
|
|
|
ConstantFP::get(Type::DoubleTy, APFloat(0.0)),
|
|
|
|
"ifcond");
|
|
|
|
|
|
|
|
Function *TheFunction = Builder.GetInsertBlock()->getParent();
|
|
|
|
|
|
|
|
// Create blocks for the then and else cases. Insert the 'then' block at the
|
|
|
|
// end of the function.
|
|
|
|
BasicBlock *ThenBB = new BasicBlock("then", TheFunction);
|
|
|
|
BasicBlock *ElseBB = new BasicBlock("else");
|
|
|
|
BasicBlock *MergeBB = new BasicBlock("ifcont");
|
|
|
|
|
|
|
|
Builder.CreateCondBr(CondV, ThenBB, ElseBB);
|
|
|
|
|
|
|
|
// Emit then value.
|
|
|
|
Builder.SetInsertPoint(ThenBB);
|
|
|
|
|
|
|
|
Value *ThenV = Then->Codegen();
|
|
|
|
if (ThenV == 0) return 0;
|
|
|
|
|
|
|
|
Builder.CreateBr(MergeBB);
|
|
|
|
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
|
|
|
|
ThenBB = Builder.GetInsertBlock();
|
|
|
|
|
|
|
|
// Emit else block.
|
|
|
|
TheFunction->getBasicBlockList().push_back(ElseBB);
|
|
|
|
Builder.SetInsertPoint(ElseBB);
|
|
|
|
|
|
|
|
Value *ElseV = Else->Codegen();
|
|
|
|
if (ElseV == 0) return 0;
|
|
|
|
|
|
|
|
Builder.CreateBr(MergeBB);
|
|
|
|
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
|
|
|
|
ElseBB = Builder.GetInsertBlock();
|
|
|
|
|
|
|
|
// Emit merge block.
|
|
|
|
TheFunction->getBasicBlockList().push_back(MergeBB);
|
|
|
|
Builder.SetInsertPoint(MergeBB);
|
|
|
|
PHINode *PN = Builder.CreatePHI(Type::DoubleTy, "iftmp");
|
|
|
|
|
|
|
|
PN->addIncoming(ThenV, ThenBB);
|
|
|
|
PN->addIncoming(ElseV, ElseBB);
|
|
|
|
return PN;
|
|
|
|
}
|
|
|
|
|
|
|
|
Value *ForExprAST::Codegen() {
|
|
|
|
// Output this as:
|
|
|
|
// ...
|
|
|
|
// start = startexpr
|
|
|
|
// goto loop
|
|
|
|
// loop:
|
|
|
|
// variable = phi [start, loopheader], [nextvariable, loopend]
|
|
|
|
// ...
|
|
|
|
// bodyexpr
|
|
|
|
// ...
|
|
|
|
// loopend:
|
|
|
|
// step = stepexpr
|
|
|
|
// nextvariable = variable + step
|
|
|
|
// endcond = endexpr
|
|
|
|
// br endcond, loop, endloop
|
|
|
|
// outloop:
|
|
|
|
|
|
|
|
// Emit the start code first, without 'variable' in scope.
|
|
|
|
Value *StartVal = Start->Codegen();
|
|
|
|
if (StartVal == 0) return 0;
|
|
|
|
|
|
|
|
// Make the new basic block for the loop header, inserting after current
|
|
|
|
// block.
|
|
|
|
Function *TheFunction = Builder.GetInsertBlock()->getParent();
|
|
|
|
BasicBlock *PreheaderBB = Builder.GetInsertBlock();
|
|
|
|
BasicBlock *LoopBB = new BasicBlock("loop", TheFunction);
|
|
|
|
|
|
|
|
// Insert an explicit fall through from the current block to the LoopBB.
|
|
|
|
Builder.CreateBr(LoopBB);
|
|
|
|
|
|
|
|
// Start insertion in LoopBB.
|
|
|
|
Builder.SetInsertPoint(LoopBB);
|
|
|
|
|
|
|
|
// Start the PHI node with an entry for Start.
|
|
|
|
PHINode *Variable = Builder.CreatePHI(Type::DoubleTy, VarName.c_str());
|
|
|
|
Variable->addIncoming(StartVal, PreheaderBB);
|
|
|
|
|
|
|
|
// Within the loop, the variable is defined equal to the PHI node. If it
|
|
|
|
// shadows an existing variable, we have to restore it, so save it now.
|
|
|
|
Value *OldVal = NamedValues[VarName];
|
|
|
|
NamedValues[VarName] = Variable;
|
|
|
|
|
|
|
|
// Emit the body of the loop. This, like any other expr, can change the
|
|
|
|
// current BB. Note that we ignore the value computed by the body, but don't
|
|
|
|
// allow an error.
|
|
|
|
if (Body->Codegen() == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
// Emit the step value.
|
|
|
|
Value *StepVal;
|
|
|
|
if (Step) {
|
|
|
|
StepVal = Step->Codegen();
|
|
|
|
if (StepVal == 0) return 0;
|
|
|
|
} else {
|
|
|
|
// If not specified, use 1.0.
|
|
|
|
StepVal = ConstantFP::get(Type::DoubleTy, APFloat(1.0));
|
|
|
|
}
|
|
|
|
|
|
|
|
Value *NextVar = Builder.CreateAdd(Variable, StepVal, "nextvar");
|
|
|
|
|
|
|
|
// Compute the end condition.
|
|
|
|
Value *EndCond = End->Codegen();
|
|
|
|
if (EndCond == 0) return EndCond;
|
|
|
|
|
|
|
|
// Convert condition to a bool by comparing equal to 0.0.
|
|
|
|
EndCond = Builder.CreateFCmpONE(EndCond,
|
|
|
|
ConstantFP::get(Type::DoubleTy, APFloat(0.0)),
|
|
|
|
"loopcond");
|
|
|
|
|
|
|
|
// Create the "after loop" block and insert it.
|
|
|
|
BasicBlock *LoopEndBB = Builder.GetInsertBlock();
|
|
|
|
BasicBlock *AfterBB = new BasicBlock("afterloop", TheFunction);
|
|
|
|
|
|
|
|
// Insert the conditional branch into the end of LoopEndBB.
|
|
|
|
Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
|
|
|
|
|
|
|
|
// Any new code will be inserted in AfterBB.
|
|
|
|
Builder.SetInsertPoint(AfterBB);
|
|
|
|
|
|
|
|
// Add a new entry to the PHI node for the backedge.
|
|
|
|
Variable->addIncoming(NextVar, LoopEndBB);
|
|
|
|
|
|
|
|
// Restore the unshadowed variable.
|
|
|
|
if (OldVal)
|
|
|
|
NamedValues[VarName] = OldVal;
|
|
|
|
else
|
|
|
|
NamedValues.erase(VarName);
|
|
|
|
|
|
|
|
|
|
|
|
// for expr always returns 0.0.
|
|
|
|
return Constant::getNullValue(Type::DoubleTy);
|
|
|
|
}
|
|
|
|
|
|
|
|
Function *PrototypeAST::Codegen() {
|
|
|
|
// Make the function type: double(double,double) etc.
|
|
|
|
std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy);
|
|
|
|
FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false);
|
|
|
|
|
|
|
|
Function *F = new Function(FT, Function::ExternalLinkage, Name, TheModule);
|
|
|
|
|
|
|
|
// If F conflicted, there was already something named 'Name'. If it has a
|
|
|
|
// body, don't allow redefinition or reextern.
|
|
|
|
if (F->getName() != Name) {
|
|
|
|
// Delete the one we just made and get the existing one.
|
|
|
|
F->eraseFromParent();
|
|
|
|
F = TheModule->getFunction(Name);
|
|
|
|
|
|
|
|
// If F already has a body, reject this.
|
|
|
|
if (!F->empty()) {
|
|
|
|
ErrorF("redefinition of function");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If F took a different number of args, reject.
|
|
|
|
if (F->arg_size() != Args.size()) {
|
|
|
|
ErrorF("redefinition of function with different # args");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set names for all arguments.
|
|
|
|
unsigned Idx = 0;
|
|
|
|
for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
|
|
|
|
++AI, ++Idx) {
|
|
|
|
AI->setName(Args[Idx]);
|
|
|
|
|
|
|
|
// Add arguments to variable symbol table.
|
|
|
|
NamedValues[Args[Idx]] = AI;
|
|
|
|
}
|
|
|
|
|
|
|
|
return F;
|
|
|
|
}
|
|
|
|
|
|
|
|
Function *FunctionAST::Codegen() {
|
|
|
|
NamedValues.clear();
|
|
|
|
|
|
|
|
Function *TheFunction = Proto->Codegen();
|
|
|
|
if (TheFunction == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
// If this is an operator, install it.
|
|
|
|
if (Proto->isBinaryOp())
|
|
|
|
BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
|
|
|
|
|
|
|
|
// Create a new basic block to start insertion into.
|
|
|
|
BasicBlock *BB = new BasicBlock("entry", TheFunction);
|
|
|
|
Builder.SetInsertPoint(BB);
|
|
|
|
|
|
|
|
if (Value *RetVal = Body->Codegen()) {
|
|
|
|
// Finish off the function.
|
|
|
|
Builder.CreateRet(RetVal);
|
|
|
|
|
|
|
|
// Validate the generated code, checking for consistency.
|
|
|
|
verifyFunction(*TheFunction);
|
|
|
|
|
|
|
|
// Optimize the function.
|
|
|
|
TheFPM->run(*TheFunction);
|
|
|
|
|
|
|
|
return TheFunction;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Error reading body, remove function.
|
|
|
|
TheFunction->eraseFromParent();
|
|
|
|
|
|
|
|
if (Proto->isBinaryOp())
|
|
|
|
BinopPrecedence.erase(Proto->getOperatorName());
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Top-Level parsing and JIT Driver
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
static ExecutionEngine *TheExecutionEngine;
|
|
|
|
|
|
|
|
static void HandleDefinition() {
|
|
|
|
if (FunctionAST *F = ParseDefinition()) {
|
|
|
|
if (Function *LF = F->Codegen()) {
|
|
|
|
fprintf(stderr, "Read function definition:");
|
|
|
|
LF->dump();
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Skip token for error recovery.
|
|
|
|
getNextToken();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void HandleExtern() {
|
|
|
|
if (PrototypeAST *P = ParseExtern()) {
|
|
|
|
if (Function *F = P->Codegen()) {
|
|
|
|
fprintf(stderr, "Read extern: ");
|
|
|
|
F->dump();
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Skip token for error recovery.
|
|
|
|
getNextToken();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void HandleTopLevelExpression() {
|
|
|
|
// Evaluate a top level expression into an anonymous function.
|
|
|
|
if (FunctionAST *F = ParseTopLevelExpr()) {
|
|
|
|
if (Function *LF = F->Codegen()) {
|
|
|
|
// JIT the function, returning a function pointer.
|
|
|
|
void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
|
|
|
|
|
|
|
|
// Cast it to the right type (takes no arguments, returns a double) so we
|
|
|
|
// can call it as a native function.
|
|
|
|
double (*FP)() = (double (*)())FPtr;
|
|
|
|
fprintf(stderr, "Evaluated to %f\n", FP());
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Skip token for error recovery.
|
|
|
|
getNextToken();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// top ::= definition | external | expression | ';'
|
|
|
|
static void MainLoop() {
|
|
|
|
while (1) {
|
|
|
|
fprintf(stderr, "ready> ");
|
|
|
|
switch (CurTok) {
|
|
|
|
case tok_eof: return;
|
|
|
|
case ';': getNextToken(); break; // ignore top level semicolons.
|
|
|
|
case tok_def: HandleDefinition(); break;
|
|
|
|
case tok_extern: HandleExtern(); break;
|
|
|
|
default: HandleTopLevelExpression(); break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// "Library" functions that can be "extern'd" from user code.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
/// putchard - putchar that takes a double and returns 0.
|
|
|
|
extern "C"
|
|
|
|
double putchard(double X) {
|
|
|
|
putchar((char)X);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// printd - printf that takes a double prints it as "%f\n", returning 0.
|
|
|
|
extern "C"
|
|
|
|
double printd(double X) {
|
|
|
|
printf("%f\n", X);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Main driver code.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
// Install standard binary operators.
|
|
|
|
// 1 is lowest precedence.
|
|
|
|
BinopPrecedence['<'] = 10;
|
|
|
|
BinopPrecedence['+'] = 20;
|
|
|
|
BinopPrecedence['-'] = 20;
|
|
|
|
BinopPrecedence['*'] = 40; // highest.
|
|
|
|
|
|
|
|
// Prime the first token.
|
|
|
|
fprintf(stderr, "ready> ");
|
|
|
|
getNextToken();
|
|
|
|
|
|
|
|
// Make the module, which holds all the code.
|
|
|
|
TheModule = new Module("my cool jit");
|
|
|
|
|
|
|
|
// Create the JIT.
|
|
|
|
TheExecutionEngine = ExecutionEngine::create(TheModule);
|
|
|
|
|
|
|
|
{
|
|
|
|
ExistingModuleProvider OurModuleProvider(TheModule);
|
|
|
|
FunctionPassManager OurFPM(&OurModuleProvider);
|
|
|
|
|
|
|
|
// Set up the optimizer pipeline. Start with registering info about how the
|
|
|
|
// target lays out data structures.
|
|
|
|
OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
|
|
|
|
// Do simple "peephole" optimizations and bit-twiddling optzns.
|
|
|
|
OurFPM.add(createInstructionCombiningPass());
|
|
|
|
// Reassociate expressions.
|
|
|
|
OurFPM.add(createReassociatePass());
|
|
|
|
// Eliminate Common SubExpressions.
|
|
|
|
OurFPM.add(createGVNPass());
|
|
|
|
// Simplify the control flow graph (deleting unreachable blocks, etc).
|
|
|
|
OurFPM.add(createCFGSimplificationPass());
|
|
|
|
// Set the global so the code gen can use this.
|
|
|
|
TheFPM = &OurFPM;
|
|
|
|
|
|
|
|
// Run the main "interpreter loop" now.
|
|
|
|
MainLoop();
|
|
|
|
|
|
|
|
TheFPM = 0;
|
|
|
|
} // Free module provider and pass manager.
|
|
|
|
|
|
|
|
|
|
|
|
// Print out all of the generated code.
|
|
|
|
TheModule->dump();
|
|
|
|
return 0;
|
|
|
|
}
|
2007-11-01 06:49:54 +00:00
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
|
|
|
<hr>
|
|
|
|
<address>
|
|
|
|
<a href="http://jigsaw.w3.org/css-validator/check/referer"><img
|
|
|
|
src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
|
|
|
|
<a href="http://validator.w3.org/check/referer"><img
|
|
|
|
src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
|
|
|
|
|
|
|
|
<a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
|
|
|
|
<a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
|
|
|
|
Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
|
|
|
|
</address>
|
|
|
|
</body>
|
|
|
|
</html>
|