852 lines
24 KiB
C++
Raw Normal View History

#include "llvm/DerivedTypes.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/Interpreter.h"
#include "llvm/ExecutionEngine/JIT.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetSelect.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Support/IRBuilder.h"
#include <cstdio>
#include <string>
#include <map>
#include <vector>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
tok_eof = -1,
// commands
tok_def = -2, tok_extern = -3,
// primary
tok_identifier = -4, tok_number = -5,
// control
tok_if = -6, tok_then = -7, tok_else = -8,
tok_for = -9, tok_in = -10
};
static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number
/// gettok - Return the next token from standard input.
static int gettok() {
static int LastChar = ' ';
// Skip any whitespace.
while (isspace(LastChar))
LastChar = getchar();
if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = getchar())))
IdentifierStr += LastChar;
if (IdentifierStr == "def") return tok_def;
if (IdentifierStr == "extern") return tok_extern;
if (IdentifierStr == "if") return tok_if;
if (IdentifierStr == "then") return tok_then;
if (IdentifierStr == "else") return tok_else;
if (IdentifierStr == "for") return tok_for;
if (IdentifierStr == "in") return tok_in;
return tok_identifier;
}
if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {
NumStr += LastChar;
LastChar = getchar();
} while (isdigit(LastChar) || LastChar == '.');
NumVal = strtod(NumStr.c_str(), 0);
return tok_number;
}
if (LastChar == '#') {
// Comment until end of line.
do LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
if (LastChar != EOF)
return gettok();
}
// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;
// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;
}
//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
virtual ~ExprAST() {}
virtual Value *Codegen() = 0;
};
/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;
public:
NumberExprAST(double val) : Val(val) {}
virtual Value *Codegen();
};
/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;
public:
VariableExprAST(const std::string &name) : Name(name) {}
virtual Value *Codegen();
};
/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
ExprAST *LHS, *RHS;
public:
BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
: Op(op), LHS(lhs), RHS(rhs) {}
virtual Value *Codegen();
};
/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
std::vector<ExprAST*> Args;
public:
CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
: Callee(callee), Args(args) {}
virtual Value *Codegen();
};
/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
ExprAST *Cond, *Then, *Else;
public:
IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
: Cond(cond), Then(then), Else(_else) {}
virtual Value *Codegen();
};
/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
ExprAST *Start, *End, *Step, *Body;
public:
ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
ExprAST *step, ExprAST *body)
: VarName(varname), Start(start), End(end), Step(step), Body(body) {}
virtual Value *Codegen();
};
/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;
public:
PrototypeAST(const std::string &name, const std::vector<std::string> &args)
: Name(name), Args(args) {}
Function *Codegen();
};
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
PrototypeAST *Proto;
ExprAST *Body;
public:
FunctionAST(PrototypeAST *proto, ExprAST *body)
: Proto(proto), Body(body) {}
Function *Codegen();
};
//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//
/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() {
return CurTok = gettok();
}
/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;
/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
if (!isascii(CurTok))
return -1;
// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0) return -1;
return TokPrec;
}
/// Error* - These are little helper functions for error handling.
ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
static ExprAST *ParseExpression();
/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static ExprAST *ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '(') // Simple variable ref.
return new VariableExprAST(IdName);
// Call.
getNextToken(); // eat (
std::vector<ExprAST*> Args;
if (CurTok != ')') {
while (1) {
ExprAST *Arg = ParseExpression();
if (!Arg) return 0;
Args.push_back(Arg);
if (CurTok == ')') break;
if (CurTok != ',')
return Error("Expected ')' or ',' in argument list");
getNextToken();
}
}
// Eat the ')'.
getNextToken();
return new CallExprAST(IdName, Args);
}
/// numberexpr ::= number
static ExprAST *ParseNumberExpr() {
ExprAST *Result = new NumberExprAST(NumVal);
getNextToken(); // consume the number
return Result;
}
/// parenexpr ::= '(' expression ')'
static ExprAST *ParseParenExpr() {
getNextToken(); // eat (.
ExprAST *V = ParseExpression();
if (!V) return 0;
if (CurTok != ')')
return Error("expected ')'");
getNextToken(); // eat ).
return V;
}
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static ExprAST *ParseIfExpr() {
getNextToken(); // eat the if.
// condition.
ExprAST *Cond = ParseExpression();
if (!Cond) return 0;
if (CurTok != tok_then)
return Error("expected then");
getNextToken(); // eat the then
ExprAST *Then = ParseExpression();
if (Then == 0) return 0;
if (CurTok != tok_else)
return Error("expected else");
getNextToken();
ExprAST *Else = ParseExpression();
if (!Else) return 0;
return new IfExprAST(Cond, Then, Else);
}
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static ExprAST *ParseForExpr() {
getNextToken(); // eat the for.
if (CurTok != tok_identifier)
return Error("expected identifier after for");
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '=')
return Error("expected '=' after for");
getNextToken(); // eat '='.
ExprAST *Start = ParseExpression();
if (Start == 0) return 0;
if (CurTok != ',')
return Error("expected ',' after for start value");
getNextToken();
ExprAST *End = ParseExpression();
if (End == 0) return 0;
// The step value is optional.
ExprAST *Step = 0;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
if (Step == 0) return 0;
}
if (CurTok != tok_in)
return Error("expected 'in' after for");
getNextToken(); // eat 'in'.
ExprAST *Body = ParseExpression();
if (Body == 0) return 0;
return new ForExprAST(IdName, Start, End, Step, Body);
}
/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
static ExprAST *ParsePrimary() {
switch (CurTok) {
default: return Error("unknown token when expecting an expression");
case tok_identifier: return ParseIdentifierExpr();
case tok_number: return ParseNumberExpr();
case '(': return ParseParenExpr();
case tok_if: return ParseIfExpr();
case tok_for: return ParseForExpr();
}
}
/// binoprhs
/// ::= ('+' primary)*
static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();
// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)
return LHS;
// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop
// Parse the primary expression after the binary operator.
ExprAST *RHS = ParsePrimary();
if (!RHS) return 0;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
RHS = ParseBinOpRHS(TokPrec+1, RHS);
if (RHS == 0) return 0;
}
// Merge LHS/RHS.
LHS = new BinaryExprAST(BinOp, LHS, RHS);
}
}
/// expression
/// ::= primary binoprhs
///
static ExprAST *ParseExpression() {
ExprAST *LHS = ParsePrimary();
if (!LHS) return 0;
return ParseBinOpRHS(0, LHS);
}
/// prototype
/// ::= id '(' id* ')'
static PrototypeAST *ParsePrototype() {
if (CurTok != tok_identifier)
return ErrorP("Expected function name in prototype");
std::string FnName = IdentifierStr;
getNextToken();
if (CurTok != '(')
return ErrorP("Expected '(' in prototype");
std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);
if (CurTok != ')')
return ErrorP("Expected ')' in prototype");
// success.
getNextToken(); // eat ')'.
return new PrototypeAST(FnName, ArgNames);
}
/// definition ::= 'def' prototype expression
static FunctionAST *ParseDefinition() {
getNextToken(); // eat def.
PrototypeAST *Proto = ParsePrototype();
if (Proto == 0) return 0;
if (ExprAST *E = ParseExpression())
return new FunctionAST(Proto, E);
return 0;
}
/// toplevelexpr ::= expression
static FunctionAST *ParseTopLevelExpr() {
if (ExprAST *E = ParseExpression()) {
// Make an anonymous proto.
PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
return new FunctionAST(Proto, E);
}
return 0;
}
/// external ::= 'extern' prototype
static PrototypeAST *ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}
//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//
static Module *TheModule;
static IRBuilder<> Builder(getGlobalContext());
static std::map<std::string, Value*> NamedValues;
static FunctionPassManager *TheFPM;
Value *ErrorV(const char *Str) { Error(Str); return 0; }
Value *NumberExprAST::Codegen() {
return ConstantFP::get(getGlobalContext(), APFloat(Val));
}
Value *VariableExprAST::Codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
return V ? V : ErrorV("Unknown variable name");
}
Value *BinaryExprAST::Codegen() {
Value *L = LHS->Codegen();
Value *R = RHS->Codegen();
if (L == 0 || R == 0) return 0;
switch (Op) {
case '+': return Builder.CreateAdd(L, R, "addtmp");
case '-': return Builder.CreateSub(L, R, "subtmp");
case '*': return Builder.CreateMul(L, R, "multmp");
case '<':
L = Builder.CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
"booltmp");
default: return ErrorV("invalid binary operator");
}
}
Value *CallExprAST::Codegen() {
// Look up the name in the global module table.
Function *CalleeF = TheModule->getFunction(Callee);
if (CalleeF == 0)
return ErrorV("Unknown function referenced");
// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return ErrorV("Incorrect # arguments passed");
std::vector<Value*> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->Codegen());
if (ArgsV.back() == 0) return 0;
}
return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
}
Value *IfExprAST::Codegen() {
Value *CondV = Cond->Codegen();
if (CondV == 0) return 0;
// Convert condition to a bool by comparing equal to 0.0.
CondV = Builder.CreateFCmpONE(CondV,
ConstantFP::get(getGlobalContext(), APFloat(0.0)),
"ifcond");
Function *TheFunction = Builder.GetInsertBlock()->getParent();
// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
Builder.CreateCondBr(CondV, ThenBB, ElseBB);
// Emit then value.
Builder.SetInsertPoint(ThenBB);
Value *ThenV = Then->Codegen();
if (ThenV == 0) return 0;
Builder.CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = Builder.GetInsertBlock();
// Emit else block.
TheFunction->getBasicBlockList().push_back(ElseBB);
Builder.SetInsertPoint(ElseBB);
Value *ElseV = Else->Codegen();
if (ElseV == 0) return 0;
Builder.CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = Builder.GetInsertBlock();
// Emit merge block.
TheFunction->getBasicBlockList().push_back(MergeBB);
Builder.SetInsertPoint(MergeBB);
PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()),
"iftmp");
PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;
}
Value *ForExprAST::Codegen() {
// Output this as:
// ...
// start = startexpr
// goto loop
// loop:
// variable = phi [start, loopheader], [nextvariable, loopend]
// ...
// bodyexpr
// ...
// loopend:
// step = stepexpr
// nextvariable = variable + step
// endcond = endexpr
// br endcond, loop, endloop
// outloop:
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->Codegen();
if (StartVal == 0) return 0;
// Make the new basic block for the loop header, inserting after current
// block.
Function *TheFunction = Builder.GetInsertBlock()->getParent();
BasicBlock *PreheaderBB = Builder.GetInsertBlock();
BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
// Insert an explicit fall through from the current block to the LoopBB.
Builder.CreateBr(LoopBB);
// Start insertion in LoopBB.
Builder.SetInsertPoint(LoopBB);
// Start the PHI node with an entry for Start.
PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), VarName.c_str());
Variable->addIncoming(StartVal, PreheaderBB);
// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
Value *OldVal = NamedValues[VarName];
NamedValues[VarName] = Variable;
// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (Body->Codegen() == 0)
return 0;
// Emit the step value.
Value *StepVal;
if (Step) {
StepVal = Step->Codegen();
if (StepVal == 0) return 0;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
}
Value *NextVar = Builder.CreateAdd(Variable, StepVal, "nextvar");
// Compute the end condition.
Value *EndCond = End->Codegen();
if (EndCond == 0) return EndCond;
// Convert condition to a bool by comparing equal to 0.0.
EndCond = Builder.CreateFCmpONE(EndCond,
ConstantFP::get(getGlobalContext(), APFloat(0.0)),
"loopcond");
// Create the "after loop" block and insert it.
BasicBlock *LoopEndBB = Builder.GetInsertBlock();
BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
// Insert the conditional branch into the end of LoopEndBB.
Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
// Any new code will be inserted in AfterBB.
Builder.SetInsertPoint(AfterBB);
// Add a new entry to the PHI node for the backedge.
Variable->addIncoming(NextVar, LoopEndBB);
// Restore the unshadowed variable.
if (OldVal)
NamedValues[VarName] = OldVal;
else
NamedValues.erase(VarName);
// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
}
Function *PrototypeAST::Codegen() {
// Make the function type: double(double,double) etc.
std::vector<const Type*> Doubles(Args.size(),
Type::getDoubleTy(getGlobalContext()));
FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
Doubles, false);
Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
// If F conflicted, there was already something named 'Name'. If it has a
// body, don't allow redefinition or reextern.
if (F->getName() != Name) {
// Delete the one we just made and get the existing one.
F->eraseFromParent();
F = TheModule->getFunction(Name);
// If F already has a body, reject this.
if (!F->empty()) {
ErrorF("redefinition of function");
return 0;
}
// If F took a different number of args, reject.
if (F->arg_size() != Args.size()) {
ErrorF("redefinition of function with different # args");
return 0;
}
}
// Set names for all arguments.
unsigned Idx = 0;
for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
++AI, ++Idx) {
AI->setName(Args[Idx]);
// Add arguments to variable symbol table.
NamedValues[Args[Idx]] = AI;
}
return F;
}
Function *FunctionAST::Codegen() {
NamedValues.clear();
Function *TheFunction = Proto->Codegen();
if (TheFunction == 0)
return 0;
// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
Builder.SetInsertPoint(BB);
if (Value *RetVal = Body->Codegen()) {
// Finish off the function.
Builder.CreateRet(RetVal);
// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);
// Optimize the function.
TheFPM->run(*TheFunction);
return TheFunction;
}
// Error reading body, remove function.
TheFunction->eraseFromParent();
return 0;
}
//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//
static ExecutionEngine *TheExecutionEngine;
static void HandleDefinition() {
if (FunctionAST *F = ParseDefinition()) {
if (Function *LF = F->Codegen()) {
fprintf(stderr, "Read function definition:");
LF->dump();
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleExtern() {
if (PrototypeAST *P = ParseExtern()) {
if (Function *F = P->Codegen()) {
fprintf(stderr, "Read extern: ");
F->dump();
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (FunctionAST *F = ParseTopLevelExpr()) {
if (Function *LF = F->Codegen()) {
// JIT the function, returning a function pointer.
void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
// Cast it to the right type (takes no arguments, returns a double) so we
// can call it as a native function.
double (*FP)() = (double (*)())(intptr_t)FPtr;
fprintf(stderr, "Evaluated to %f\n", FP());
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (1) {
fprintf(stderr, "ready> ");
switch (CurTok) {
case tok_eof: return;
case ';': getNextToken(); break; // ignore top-level semicolons.
case tok_def: HandleDefinition(); break;
case tok_extern: HandleExtern(); break;
default: HandleTopLevelExpression(); break;
}
}
}
//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
//===----------------------------------------------------------------------===//
/// putchard - putchar that takes a double and returns 0.
extern "C"
double putchard(double X) {
putchar((char)X);
return 0;
}
//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//
int main() {
InitializeNativeTarget();
LLVMContext &Context = getGlobalContext();
// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.
// Prime the first token.
fprintf(stderr, "ready> ");
getNextToken();
// Make the module, which holds all the code.
TheModule = new Module("my cool jit", Context);
// Create the JIT. This takes ownership of the module.
TheExecutionEngine = EngineBuilder(TheModule).create();
FunctionPassManager OurFPM(TheModule);
// Set up the optimizer pipeline. Start with registering info about how the
// target lays out data structures.
OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
// Do simple "peephole" optimizations and bit-twiddling optzns.
OurFPM.add(createInstructionCombiningPass());
// Reassociate expressions.
OurFPM.add(createReassociatePass());
// Eliminate Common SubExpressions.
OurFPM.add(createGVNPass());
// Simplify the control flow graph (deleting unreachable blocks, etc).
OurFPM.add(createCFGSimplificationPass());
OurFPM.doInitialization();
// Set the global so the code gen can use this.
TheFPM = &OurFPM;
// Run the main "interpreter loop" now.
MainLoop();
TheFPM = 0;
// Print out all of the generated code.
TheModule->dump();
return 0;
}