llvm-6502/lib/Target/ARM/README-Thumb.txt

247 lines
6.8 KiB
Plaintext
Raw Normal View History

//===---------------------------------------------------------------------===//
// Random ideas for the ARM backend (Thumb specific).
//===---------------------------------------------------------------------===//
* Add support for compiling functions in both ARM and Thumb mode, then taking
the smallest.
* Add support for compiling individual basic blocks in thumb mode, when in a
larger ARM function. This can be used for presumed cold code, like paths
to abort (failure path of asserts), EH handling code, etc.
* Thumb doesn't have normal pre/post increment addressing modes, but you can
load/store 32-bit integers with pre/postinc by using load/store multiple
instrs with a single register.
* Make better use of high registers r8, r10, r11, r12 (ip). Some variants of add
and cmp instructions can use high registers. Also, we can use them as
temporaries to spill values into.
* In thumb mode, short, byte, and bool preferred alignments are currently set
to 4 to accommodate ISA restriction (i.e. add sp, #imm, imm must be multiple
of 4).
//===---------------------------------------------------------------------===//
Potential jumptable improvements:
* If we know function size is less than (1 << 16) * 2 bytes, we can use 16-bit
jumptable entries (e.g. (L1 - L2) >> 1). Or even smaller entries if the
function is even smaller. This also applies to ARM.
* Thumb jumptable codegen can improve given some help from the assembler. This
is what we generate right now:
.set PCRELV0, (LJTI1_0_0-(LPCRELL0+4))
LPCRELL0:
mov r1, #PCRELV0
add r1, pc
ldr r0, [r0, r1]
cpy pc, r0
.align 2
LJTI1_0_0:
.long LBB1_3
...
Note there is another pc relative add that we can take advantage of.
add r1, pc, #imm_8 * 4
We should be able to generate:
LPCRELL0:
add r1, LJTI1_0_0
ldr r0, [r0, r1]
cpy pc, r0
.align 2
LJTI1_0_0:
.long LBB1_3
if the assembler can translate the add to:
add r1, pc, #((LJTI1_0_0-(LPCRELL0+4))&0xfffffffc)
Note the assembler also does something similar to constpool load:
LPCRELL0:
ldr r0, LCPI1_0
=>
ldr r0, pc, #((LCPI1_0-(LPCRELL0+4))&0xfffffffc)
//===---------------------------------------------------------------------===//
We compiles the following:
define i16 @func_entry_2E_ce(i32 %i) {
switch i32 %i, label %bb12.exitStub [
i32 0, label %bb4.exitStub
i32 1, label %bb9.exitStub
i32 2, label %bb4.exitStub
i32 3, label %bb4.exitStub
i32 7, label %bb9.exitStub
i32 8, label %bb.exitStub
i32 9, label %bb9.exitStub
]
bb12.exitStub:
ret i16 0
bb4.exitStub:
ret i16 1
bb9.exitStub:
ret i16 2
bb.exitStub:
ret i16 3
}
into:
_func_entry_2E_ce:
mov r2, #1
lsl r2, r0
cmp r0, #9
bhi LBB1_4 @bb12.exitStub
LBB1_1: @newFuncRoot
mov r1, #13
tst r2, r1
bne LBB1_5 @bb4.exitStub
LBB1_2: @newFuncRoot
ldr r1, LCPI1_0
tst r2, r1
bne LBB1_6 @bb9.exitStub
LBB1_3: @newFuncRoot
mov r1, #1
lsl r1, r1, #8
tst r2, r1
bne LBB1_7 @bb.exitStub
LBB1_4: @bb12.exitStub
mov r0, #0
bx lr
LBB1_5: @bb4.exitStub
mov r0, #1
bx lr
LBB1_6: @bb9.exitStub
mov r0, #2
bx lr
LBB1_7: @bb.exitStub
mov r0, #3
bx lr
LBB1_8:
.align 2
LCPI1_0:
.long 642
gcc compiles to:
cmp r0, #9
@ lr needed for prologue
bhi L2
ldr r3, L11
mov r2, #1
mov r1, r2, asl r0
ands r0, r3, r2, asl r0
movne r0, #2
bxne lr
tst r1, #13
beq L9
L3:
mov r0, r2
bx lr
L9:
tst r1, #256
movne r0, #3
bxne lr
L2:
mov r0, #0
bx lr
L12:
.align 2
L11:
.long 642
GCC is doing a couple of clever things here:
1. It is predicating one of the returns. This isn't a clear win though: in
cases where that return isn't taken, it is replacing one condbranch with
two 'ne' predicated instructions.
2. It is sinking the shift of "1 << i" into the tst, and using ands instead of
tst. This will probably require whole function isel.
3. GCC emits:
tst r1, #256
we emit:
mov r1, #1
lsl r1, r1, #8
tst r2, r1
//===---------------------------------------------------------------------===//
When spilling in thumb mode and the sp offset is too large to fit in the ldr /
str offset field, we load the offset from a constpool entry and add it to sp:
ldr r2, LCPI
add r2, sp
ldr r2, [r2]
These instructions preserve the condition code which is important if the spill
is between a cmp and a bcc instruction. However, we can use the (potentially)
cheaper sequnce if we know it's ok to clobber the condition register.
add r2, sp, #255 * 4
add r2, #132
ldr r2, [r2, #7 * 4]
This is especially bad when dynamic alloca is used. The all fixed size stack
objects are referenced off the frame pointer with negative offsets. See
oggenc for an example.
//===---------------------------------------------------------------------===//
We are reserving R3 as a scratch register under thumb mode. So if it is live in
to the function, we save / restore R3 to / from R12. Until register scavenging
is done, we should save R3 to a high callee saved reg at emitPrologue time
(when hasFP is true or stack size is large) and restore R3 from that register
instead. This allows us to at least get rid of the save to r12 everytime it is
used.
//===---------------------------------------------------------------------===//
Poor codegen test/CodeGen/ARM/select.ll f7:
ldr r5, LCPI1_0
LPC0:
add r5, pc
ldr r6, LCPI1_1
ldr r2, LCPI1_2
cpy r3, r6
cpy lr, pc
bx r5
//===---------------------------------------------------------------------===//
Make register allocator / spiller smarter so we can re-materialize "mov r, imm",
etc. Almost all Thumb instructions clobber condition code.
//===---------------------------------------------------------------------===//
Add ldmia, stmia support.
//===---------------------------------------------------------------------===//
Thumb load / store address mode offsets are scaled. The values kept in the
instruction operands are pre-scale values. This probably ought to be changed
to avoid extra work when we convert Thumb2 instructions to Thumb1 instructions.
//===---------------------------------------------------------------------===//
We need to make (some of the) Thumb1 instructions predicable. That will allow
shrinking of predicated Thumb2 instructions. To allow this, we need to be able
to toggle the 's' bit since they do not set CPSR when they are inside IT blocks.
//===---------------------------------------------------------------------===//
Make use of hi register variants of cmp: tCMPhir / tCMPZhir.
//===---------------------------------------------------------------------===//