llvm-6502/include/llvm/Analysis/DominanceFrontierImpl.h

227 lines
6.8 KiB
C
Raw Normal View History

//===- llvm/Analysis/DominanceFrontier.h - Dominator Frontiers --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the generic implementation of the DominanceFrontier class, which
// calculate and holds the dominance frontier for a function for.
//
// This should be considered deprecated, don't add any more uses of this data
// structure.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_DOMINANCEFRONTIERIMPL_H
#define LLVM_ANALYSIS_DOMINANCEFRONTIERIMPL_H
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/DominanceFrontier.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GenericDomTree.h"
namespace llvm {
template <class BlockT>
class DFCalculateWorkObject {
public:
typedef DomTreeNodeBase<BlockT> DomTreeNodeT;
DFCalculateWorkObject(BlockT *B, BlockT *P, const DomTreeNodeT *N,
const DomTreeNodeT *PN)
: currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
BlockT *currentBB;
BlockT *parentBB;
const DomTreeNodeT *Node;
const DomTreeNodeT *parentNode;
};
template <class BlockT>
void DominanceFrontierBase<BlockT>::removeBlock(BlockT *BB) {
assert(find(BB) != end() && "Block is not in DominanceFrontier!");
for (iterator I = begin(), E = end(); I != E; ++I)
I->second.erase(BB);
Frontiers.erase(BB);
}
template <class BlockT>
void DominanceFrontierBase<BlockT>::addToFrontier(iterator I,
BlockT *Node) {
assert(I != end() && "BB is not in DominanceFrontier!");
assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
I->second.erase(Node);
}
template <class BlockT>
void DominanceFrontierBase<BlockT>::removeFromFrontier(iterator I,
BlockT *Node) {
assert(I != end() && "BB is not in DominanceFrontier!");
assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
I->second.erase(Node);
}
template <class BlockT>
bool DominanceFrontierBase<BlockT>::compareDomSet(DomSetType &DS1,
const DomSetType &DS2) const {
std::set<BlockT *> tmpSet;
for (BlockT *BB : DS2)
tmpSet.insert(BB);
for (typename DomSetType::const_iterator I = DS1.begin(), E = DS1.end();
I != E;) {
BlockT *Node = *I++;
if (tmpSet.erase(Node) == 0)
// Node is in DS1 but tnot in DS2.
return true;
}
if (!tmpSet.empty()) {
// There are nodes that are in DS2 but not in DS1.
return true;
}
// DS1 and DS2 matches.
return false;
}
template <class BlockT>
bool DominanceFrontierBase<BlockT>::compare(
DominanceFrontierBase<BlockT> &Other) const {
DomSetMapType tmpFrontiers;
for (typename DomSetMapType::const_iterator I = Other.begin(),
E = Other.end();
I != E; ++I)
tmpFrontiers.insert(std::make_pair(I->first, I->second));
for (typename DomSetMapType::iterator I = tmpFrontiers.begin(),
E = tmpFrontiers.end();
I != E;) {
BlockT *Node = I->first;
const_iterator DFI = find(Node);
if (DFI == end())
return true;
if (compareDomSet(I->second, DFI->second))
return true;
++I;
tmpFrontiers.erase(Node);
}
if (!tmpFrontiers.empty())
return true;
return false;
}
template <class BlockT>
void DominanceFrontierBase<BlockT>::print(raw_ostream &OS) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
OS << " DomFrontier for BB ";
if (I->first)
I->first->printAsOperand(OS, false);
else
OS << " <<exit node>>";
OS << " is:\t";
const std::set<BlockT *> &BBs = I->second;
for (const BlockT *BB : BBs) {
OS << ' ';
if (BB)
BB->printAsOperand(OS, false);
else
OS << "<<exit node>>";
}
OS << '\n';
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
template <class BlockT>
void DominanceFrontierBase<BlockT>::dump() const {
print(dbgs());
}
#endif
template <class BlockT>
const typename ForwardDominanceFrontierBase<BlockT>::DomSetType &
ForwardDominanceFrontierBase<BlockT>::calculate(const DomTreeT &DT,
const DomTreeNodeT *Node) {
BlockT *BB = Node->getBlock();
DomSetType *Result = nullptr;
std::vector<DFCalculateWorkObject<BlockT>> workList;
SmallPtrSet<BlockT *, 32> visited;
workList.push_back(DFCalculateWorkObject<BlockT>(BB, nullptr, Node, nullptr));
do {
DFCalculateWorkObject<BlockT> *currentW = &workList.back();
assert(currentW && "Missing work object.");
BlockT *currentBB = currentW->currentBB;
BlockT *parentBB = currentW->parentBB;
const DomTreeNodeT *currentNode = currentW->Node;
const DomTreeNodeT *parentNode = currentW->parentNode;
assert(currentBB && "Invalid work object. Missing current Basic Block");
assert(currentNode && "Invalid work object. Missing current Node");
DomSetType &S = this->Frontiers[currentBB];
// Visit each block only once.
if (visited.insert(currentBB).second) {
// Loop over CFG successors to calculate DFlocal[currentNode]
for (auto SI = BlockTraits::child_begin(currentBB),
SE = BlockTraits::child_end(currentBB);
SI != SE; ++SI) {
// Does Node immediately dominate this successor?
if (DT[*SI]->getIDom() != currentNode)
S.insert(*SI);
}
}
// At this point, S is DFlocal. Now we union in DFup's of our children...
// Loop through and visit the nodes that Node immediately dominates (Node's
// children in the IDomTree)
bool visitChild = false;
for (typename DomTreeNodeT::const_iterator NI = currentNode->begin(),
NE = currentNode->end();
NI != NE; ++NI) {
DomTreeNodeT *IDominee = *NI;
BlockT *childBB = IDominee->getBlock();
if (visited.count(childBB) == 0) {
workList.push_back(DFCalculateWorkObject<BlockT>(
childBB, currentBB, IDominee, currentNode));
visitChild = true;
}
}
// If all children are visited or there is any child then pop this block
// from the workList.
if (!visitChild) {
if (!parentBB) {
Result = &S;
break;
}
typename DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
DomSetType &parentSet = this->Frontiers[parentBB];
for (; CDFI != CDFE; ++CDFI) {
if (!DT.properlyDominates(parentNode, DT[*CDFI]))
parentSet.insert(*CDFI);
}
workList.pop_back();
}
} while (!workList.empty());
return *Result;
}
} // End llvm namespace
#endif