llvm-6502/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp

914 lines
32 KiB
C++
Raw Normal View History

//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the ScheduleDAG class, which is a base class used by
// scheduling implementation classes.
//
//===----------------------------------------------------------------------===//
#include "ScheduleDAGSDNodes.h"
#include "InstrEmitter.h"
#include "SDNodeDbgValue.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "pre-RA-sched"
STATISTIC(LoadsClustered, "Number of loads clustered together");
// This allows latency based scheduler to notice high latency instructions
// without a target itinerary. The choise if number here has more to do with
// balancing scheduler heursitics than with the actual machine latency.
static cl::opt<int> HighLatencyCycles(
"sched-high-latency-cycles", cl::Hidden, cl::init(10),
cl::desc("Roughly estimate the number of cycles that 'long latency'"
"instructions take for targets with no itinerary"));
ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
: ScheduleDAG(mf), BB(nullptr), DAG(nullptr),
InstrItins(mf.getTarget().getInstrItineraryData()) {}
/// Run - perform scheduling.
///
misched preparation: clarify ScheduleDAG and ScheduleDAGInstrs roles. ScheduleDAG is responsible for the DAG: SUnits and SDeps. It provides target hooks for latency computation. ScheduleDAGInstrs extends ScheduleDAG and defines the current scheduling region in terms of MachineInstr iterators. It has access to the target's scheduling itinerary data. ScheduleDAGInstrs provides the logic for building the ScheduleDAG for the sequence of MachineInstrs in the current region. Target's can implement highly custom schedulers by extending this class. ScheduleDAGPostRATDList provides the driver and diagnostics for current postRA scheduling. It maintains a current Sequence of scheduled machine instructions and logic for splicing them into the block. During scheduling, it uses the ScheduleHazardRecognizer provided by the target. Specific changes: - Removed driver code from ScheduleDAG. clearDAG is the only interface needed. - Added enterRegion/exitRegion hooks to ScheduleDAGInstrs to delimit the scope of each scheduling region and associated DAG. They should be used to setup and cleanup any region-specific state in addition to the DAG itself. This is necessary because we reuse the same ScheduleDAG object for the entire function. The target may extend these hooks to do things at regions boundaries, like bundle terminators. The hooks are called even if we decide not to schedule the region. So all instructions in a block are "covered" by these calls. - Added ScheduleDAGInstrs::begin()/end() public API. - Moved Sequence into the driver layer, which is specific to the scheduling algorithm. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152208 91177308-0d34-0410-b5e6-96231b3b80d8
2012-03-07 05:21:52 +00:00
void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
BB = bb;
DAG = dag;
misched preparation: clarify ScheduleDAG and ScheduleDAGInstrs roles. ScheduleDAG is responsible for the DAG: SUnits and SDeps. It provides target hooks for latency computation. ScheduleDAGInstrs extends ScheduleDAG and defines the current scheduling region in terms of MachineInstr iterators. It has access to the target's scheduling itinerary data. ScheduleDAGInstrs provides the logic for building the ScheduleDAG for the sequence of MachineInstrs in the current region. Target's can implement highly custom schedulers by extending this class. ScheduleDAGPostRATDList provides the driver and diagnostics for current postRA scheduling. It maintains a current Sequence of scheduled machine instructions and logic for splicing them into the block. During scheduling, it uses the ScheduleHazardRecognizer provided by the target. Specific changes: - Removed driver code from ScheduleDAG. clearDAG is the only interface needed. - Added enterRegion/exitRegion hooks to ScheduleDAGInstrs to delimit the scope of each scheduling region and associated DAG. They should be used to setup and cleanup any region-specific state in addition to the DAG itself. This is necessary because we reuse the same ScheduleDAG object for the entire function. The target may extend these hooks to do things at regions boundaries, like bundle terminators. The hooks are called even if we decide not to schedule the region. So all instructions in a block are "covered" by these calls. - Added ScheduleDAGInstrs::begin()/end() public API. - Moved Sequence into the driver layer, which is specific to the scheduling algorithm. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152208 91177308-0d34-0410-b5e6-96231b3b80d8
2012-03-07 05:21:52 +00:00
// Clear the scheduler's SUnit DAG.
ScheduleDAG::clearDAG();
Sequence.clear();
// Invoke the target's selection of scheduler.
Schedule();
}
/// NewSUnit - Creates a new SUnit and return a ptr to it.
///
SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
#ifndef NDEBUG
const SUnit *Addr = nullptr;
if (!SUnits.empty())
Addr = &SUnits[0];
#endif
SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
assert((Addr == nullptr || Addr == &SUnits[0]) &&
"SUnits std::vector reallocated on the fly!");
SUnits.back().OrigNode = &SUnits.back();
SUnit *SU = &SUnits.back();
const TargetLowering &TLI = DAG->getTargetLoweringInfo();
if (!N ||
(N->isMachineOpcode() &&
N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
SU->SchedulingPref = Sched::None;
else
SU->SchedulingPref = TLI.getSchedulingPreference(N);
return SU;
}
SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
SUnit *SU = newSUnit(Old->getNode());
SU->OrigNode = Old->OrigNode;
SU->Latency = Old->Latency;
SU->isVRegCycle = Old->isVRegCycle;
SU->isCall = Old->isCall;
SU->isCallOp = Old->isCallOp;
SU->isTwoAddress = Old->isTwoAddress;
SU->isCommutable = Old->isCommutable;
SU->hasPhysRegDefs = Old->hasPhysRegDefs;
SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
SU->isScheduleHigh = Old->isScheduleHigh;
SU->isScheduleLow = Old->isScheduleLow;
SU->SchedulingPref = Old->SchedulingPref;
Old->isCloned = true;
return SU;
}
/// CheckForPhysRegDependency - Check if the dependency between def and use of
/// a specified operand is a physical register dependency. If so, returns the
/// register and the cost of copying the register.
static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
const TargetRegisterInfo *TRI,
const TargetInstrInfo *TII,
unsigned &PhysReg, int &Cost) {
if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
return;
unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg))
return;
unsigned ResNo = User->getOperand(2).getResNo();
if (Def->isMachineOpcode()) {
const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
if (ResNo >= II.getNumDefs() &&
II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
PhysReg = Reg;
const TargetRegisterClass *RC =
TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
Cost = RC->getCopyCost();
}
}
}
// Helper for AddGlue to clone node operands.
static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG,
SmallVectorImpl<EVT> &VTs,
SDValue ExtraOper = SDValue()) {
SmallVector<SDValue, 4> Ops;
for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
Ops.push_back(N->getOperand(I));
if (ExtraOper.getNode())
Ops.push_back(ExtraOper);
SDVTList VTList = DAG->getVTList(VTs);
MachineSDNode::mmo_iterator Begin = nullptr, End = nullptr;
MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
// Store memory references.
if (MN) {
Begin = MN->memoperands_begin();
End = MN->memoperands_end();
}
DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops);
// Reset the memory references
if (MN)
MN->setMemRefs(Begin, End);
}
static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
SmallVector<EVT, 4> VTs;
SDNode *GlueDestNode = Glue.getNode();
// Don't add glue from a node to itself.
if (GlueDestNode == N) return false;
// Don't add a glue operand to something that already uses glue.
if (GlueDestNode &&
N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
return false;
}
// Don't add glue to something that already has a glue value.
if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
VTs.push_back(N->getValueType(I));
if (AddGlue)
VTs.push_back(MVT::Glue);
CloneNodeWithValues(N, DAG, VTs, Glue);
return true;
}
// Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
// node even though simply shrinking the value list is sufficient.
static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
!N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
"expected an unused glue value");
SmallVector<EVT, 4> VTs;
for (unsigned I = 0, E = N->getNumValues()-1; I != E; ++I)
VTs.push_back(N->getValueType(I));
CloneNodeWithValues(N, DAG, VTs);
}
/// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
/// This function finds loads of the same base and different offsets. If the
/// offsets are not far apart (target specific), it add MVT::Glue inputs and
/// outputs to ensure they are scheduled together and in order. This
/// optimization may benefit some targets by improving cache locality.
void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
SDNode *Chain = nullptr;
unsigned NumOps = Node->getNumOperands();
if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
Chain = Node->getOperand(NumOps-1).getNode();
if (!Chain)
return;
// Look for other loads of the same chain. Find loads that are loading from
// the same base pointer and different offsets.
SmallPtrSet<SDNode*, 16> Visited;
SmallVector<int64_t, 4> Offsets;
DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode.
bool Cluster = false;
SDNode *Base = Node;
// This algorithm requires a reasonably low use count before finding a match
// to avoid uselessly blowing up compile time in large blocks.
unsigned UseCount = 0;
for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
I != E && UseCount < 100; ++I, ++UseCount) {
SDNode *User = *I;
if (User == Node || !Visited.insert(User))
continue;
int64_t Offset1, Offset2;
if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
Offset1 == Offset2)
// FIXME: Should be ok if they addresses are identical. But earlier
// optimizations really should have eliminated one of the loads.
continue;
if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
Offsets.push_back(Offset1);
O2SMap.insert(std::make_pair(Offset2, User));
Offsets.push_back(Offset2);
if (Offset2 < Offset1)
Base = User;
Cluster = true;
// Reset UseCount to allow more matches.
UseCount = 0;
}
if (!Cluster)
return;
// Sort them in increasing order.
std::sort(Offsets.begin(), Offsets.end());
// Check if the loads are close enough.
SmallVector<SDNode*, 4> Loads;
unsigned NumLoads = 0;
int64_t BaseOff = Offsets[0];
SDNode *BaseLoad = O2SMap[BaseOff];
Loads.push_back(BaseLoad);
for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
int64_t Offset = Offsets[i];
SDNode *Load = O2SMap[Offset];
if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
break; // Stop right here. Ignore loads that are further away.
Loads.push_back(Load);
++NumLoads;
}
if (NumLoads == 0)
return;
// Cluster loads by adding MVT::Glue outputs and inputs. This also
// ensure they are scheduled in order of increasing addresses.
SDNode *Lead = Loads[0];
SDValue InGlue = SDValue(nullptr, 0);
if (AddGlue(Lead, InGlue, true, DAG))
InGlue = SDValue(Lead, Lead->getNumValues() - 1);
for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
bool OutGlue = I < E - 1;
SDNode *Load = Loads[I];
// If AddGlue fails, we could leave an unsused glue value. This should not
// cause any
if (AddGlue(Load, InGlue, OutGlue, DAG)) {
if (OutGlue)
InGlue = SDValue(Load, Load->getNumValues() - 1);
++LoadsClustered;
}
else if (!OutGlue && InGlue.getNode())
RemoveUnusedGlue(InGlue.getNode(), DAG);
}
}
/// ClusterNodes - Cluster certain nodes which should be scheduled together.
///
void ScheduleDAGSDNodes::ClusterNodes() {
for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
E = DAG->allnodes_end(); NI != E; ++NI) {
SDNode *Node = &*NI;
if (!Node || !Node->isMachineOpcode())
continue;
unsigned Opc = Node->getMachineOpcode();
const MCInstrDesc &MCID = TII->get(Opc);
if (MCID.mayLoad())
// Cluster loads from "near" addresses into combined SUnits.
ClusterNeighboringLoads(Node);
}
}
void ScheduleDAGSDNodes::BuildSchedUnits() {
// During scheduling, the NodeId field of SDNode is used to map SDNodes
// to their associated SUnits by holding SUnits table indices. A value
// of -1 means the SDNode does not yet have an associated SUnit.
unsigned NumNodes = 0;
for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
E = DAG->allnodes_end(); NI != E; ++NI) {
NI->setNodeId(-1);
++NumNodes;
}
// Reserve entries in the vector for each of the SUnits we are creating. This
// ensure that reallocation of the vector won't happen, so SUnit*'s won't get
// invalidated.
// FIXME: Multiply by 2 because we may clone nodes during scheduling.
// This is a temporary workaround.
SUnits.reserve(NumNodes * 2);
// Add all nodes in depth first order.
SmallVector<SDNode*, 64> Worklist;
SmallPtrSet<SDNode*, 64> Visited;
Worklist.push_back(DAG->getRoot().getNode());
Visited.insert(DAG->getRoot().getNode());
SmallVector<SUnit*, 8> CallSUnits;
while (!Worklist.empty()) {
SDNode *NI = Worklist.pop_back_val();
// Add all operands to the worklist unless they've already been added.
for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
if (Visited.insert(NI->getOperand(i).getNode()))
Worklist.push_back(NI->getOperand(i).getNode());
if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
continue;
// If this node has already been processed, stop now.
if (NI->getNodeId() != -1) continue;
SUnit *NodeSUnit = newSUnit(NI);
// See if anything is glued to this node, if so, add them to glued
// nodes. Nodes can have at most one glue input and one glue output. Glue
// is required to be the last operand and result of a node.
// Scan up to find glued preds.
SDNode *N = NI;
while (N->getNumOperands() &&
N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
N = N->getOperand(N->getNumOperands()-1).getNode();
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NodeSUnit->NodeNum);
if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
NodeSUnit->isCall = true;
}
// Scan down to find any glued succs.
N = NI;
while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
SDValue GlueVal(N, N->getNumValues()-1);
// There are either zero or one users of the Glue result.
bool HasGlueUse = false;
for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
UI != E; ++UI)
if (GlueVal.isOperandOf(*UI)) {
HasGlueUse = true;
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NodeSUnit->NodeNum);
N = *UI;
if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
NodeSUnit->isCall = true;
break;
}
if (!HasGlueUse) break;
}
if (NodeSUnit->isCall)
CallSUnits.push_back(NodeSUnit);
// Schedule zero-latency TokenFactor below any nodes that may increase the
// schedule height. Otherwise, ancestors of the TokenFactor may appear to
// have false stalls.
if (NI->getOpcode() == ISD::TokenFactor)
NodeSUnit->isScheduleLow = true;
// If there are glue operands involved, N is now the bottom-most node
// of the sequence of nodes that are glued together.
// Update the SUnit.
NodeSUnit->setNode(N);
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NodeSUnit->NodeNum);
// Compute NumRegDefsLeft. This must be done before AddSchedEdges.
InitNumRegDefsLeft(NodeSUnit);
// Assign the Latency field of NodeSUnit using target-provided information.
computeLatency(NodeSUnit);
}
// Find all call operands.
while (!CallSUnits.empty()) {
SUnit *SU = CallSUnits.pop_back_val();
for (const SDNode *SUNode = SU->getNode(); SUNode;
SUNode = SUNode->getGluedNode()) {
if (SUNode->getOpcode() != ISD::CopyToReg)
continue;
SDNode *SrcN = SUNode->getOperand(2).getNode();
if (isPassiveNode(SrcN)) continue; // Not scheduled.
SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
SrcSU->isCallOp = true;
}
}
}
void ScheduleDAGSDNodes::AddSchedEdges() {
const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
// Check to see if the scheduler cares about latencies.
bool UnitLatencies = forceUnitLatencies();
// Pass 2: add the preds, succs, etc.
for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
SUnit *SU = &SUnits[su];
SDNode *MainNode = SU->getNode();
if (MainNode->isMachineOpcode()) {
unsigned Opc = MainNode->getMachineOpcode();
const MCInstrDesc &MCID = TII->get(Opc);
for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
SU->isTwoAddress = true;
break;
}
}
if (MCID.isCommutable())
SU->isCommutable = true;
}
// Find all predecessors and successors of the group.
for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
if (N->isMachineOpcode() &&
TII->get(N->getMachineOpcode()).getImplicitDefs()) {
SU->hasPhysRegClobbers = true;
unsigned NumUsed = InstrEmitter::CountResults(N);
while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
--NumUsed; // Skip over unused values at the end.
if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
SU->hasPhysRegDefs = true;
}
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDNode *OpN = N->getOperand(i).getNode();
if (isPassiveNode(OpN)) continue; // Not scheduled.
SUnit *OpSU = &SUnits[OpN->getNodeId()];
assert(OpSU && "Node has no SUnit!");
if (OpSU == SU) continue; // In the same group.
EVT OpVT = N->getOperand(i).getValueType();
assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
bool isChain = OpVT == MVT::Other;
unsigned PhysReg = 0;
int Cost = 1;
// Determine if this is a physical register dependency.
CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
assert((PhysReg == 0 || !isChain) &&
"Chain dependence via physreg data?");
// FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
// emits a copy from the physical register to a virtual register unless
// it requires a cross class copy (cost < 0). That means we are only
// treating "expensive to copy" register dependency as physical register
// dependency. This may change in the future though.
if (Cost >= 0 && !StressSched)
PhysReg = 0;
// If this is a ctrl dep, latency is 1.
unsigned OpLatency = isChain ? 1 : OpSU->Latency;
// Special-case TokenFactor chains as zero-latency.
if(isChain && OpN->getOpcode() == ISD::TokenFactor)
OpLatency = 0;
SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
: SDep(OpSU, SDep::Data, PhysReg);
Dep.setLatency(OpLatency);
if (!isChain && !UnitLatencies) {
computeOperandLatency(OpN, N, i, Dep);
ST.adjustSchedDependency(OpSU, SU, Dep);
}
if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
// Multiple register uses are combined in the same SUnit. For example,
// we could have a set of glued nodes with all their defs consumed by
// another set of glued nodes. Register pressure tracking sees this as
// a single use, so to keep pressure balanced we reduce the defs.
//
// We can't tell (without more book-keeping) if this results from
// glued nodes or duplicate operands. As long as we don't reduce
// NumRegDefsLeft to zero, we handle the common cases well.
--OpSU->NumRegDefsLeft;
}
}
}
}
}
/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
/// are input. This SUnit graph is similar to the SelectionDAG, but
/// excludes nodes that aren't interesting to scheduling, and represents
/// glued together nodes with a single SUnit.
void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
// Cluster certain nodes which should be scheduled together.
ClusterNodes();
// Populate the SUnits array.
BuildSchedUnits();
// Compute all the scheduling dependencies between nodes.
AddSchedEdges();
}
// Initialize NumNodeDefs for the current Node's opcode.
void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
// Check for phys reg copy.
if (!Node)
return;
if (!Node->isMachineOpcode()) {
if (Node->getOpcode() == ISD::CopyFromReg)
NodeNumDefs = 1;
else
NodeNumDefs = 0;
return;
}
unsigned POpc = Node->getMachineOpcode();
if (POpc == TargetOpcode::IMPLICIT_DEF) {
// No register need be allocated for this.
NodeNumDefs = 0;
return;
}
unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
// Some instructions define regs that are not represented in the selection DAG
// (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
DefIdx = 0;
}
// Construct a RegDefIter for this SUnit and find the first valid value.
ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
const ScheduleDAGSDNodes *SD)
: SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
InitNodeNumDefs();
Advance();
}
// Advance to the next valid value defined by the SUnit.
void ScheduleDAGSDNodes::RegDefIter::Advance() {
for (;Node;) { // Visit all glued nodes.
for (;DefIdx < NodeNumDefs; ++DefIdx) {
if (!Node->hasAnyUseOfValue(DefIdx))
continue;
ValueType = Node->getSimpleValueType(DefIdx);
++DefIdx;
return; // Found a normal regdef.
}
Node = Node->getGluedNode();
if (!Node) {
return; // No values left to visit.
}
InitNodeNumDefs();
}
}
void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
assert(SU->NumRegDefsLeft == 0 && "expect a new node");
for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
++SU->NumRegDefsLeft;
}
}
void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
SDNode *N = SU->getNode();
// TokenFactor operands are considered zero latency, and some schedulers
// (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
// whenever node latency is nonzero.
if (N && N->getOpcode() == ISD::TokenFactor) {
SU->Latency = 0;
return;
}
// Check to see if the scheduler cares about latencies.
if (forceUnitLatencies()) {
SU->Latency = 1;
return;
}
if (!InstrItins || InstrItins->isEmpty()) {
if (N && N->isMachineOpcode() &&
TII->isHighLatencyDef(N->getMachineOpcode()))
SU->Latency = HighLatencyCycles;
else
SU->Latency = 1;
return;
}
// Compute the latency for the node. We use the sum of the latencies for
// all nodes glued together into this SUnit.
SU->Latency = 0;
for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
if (N->isMachineOpcode())
SU->Latency += TII->getInstrLatency(InstrItins, N);
}
void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
unsigned OpIdx, SDep& dep) const{
// Check to see if the scheduler cares about latencies.
if (forceUnitLatencies())
return;
if (dep.getKind() != SDep::Data)
return;
unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
if (Use->isMachineOpcode())
// Adjust the use operand index by num of defs.
OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
!BB->succ_empty()) {
unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg))
// This copy is a liveout value. It is likely coalesced, so reduce the
// latency so not to penalize the def.
// FIXME: need target specific adjustment here?
Latency = (Latency > 1) ? Latency - 1 : 1;
}
if (Latency >= 0)
dep.setLatency(Latency);
}
void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
if (!SU->getNode()) {
dbgs() << "PHYS REG COPY\n";
return;
}
SU->getNode()->dump(DAG);
dbgs() << "\n";
SmallVector<SDNode *, 4> GluedNodes;
for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
GluedNodes.push_back(N);
while (!GluedNodes.empty()) {
dbgs() << " ";
GluedNodes.back()->dump(DAG);
dbgs() << "\n";
GluedNodes.pop_back();
}
#endif
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void ScheduleDAGSDNodes::dumpSchedule() const {
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
if (SUnit *SU = Sequence[i])
SU->dump(this);
else
dbgs() << "**** NOOP ****\n";
}
}
#endif
#ifndef NDEBUG
/// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
/// their state is consistent with the nodes listed in Sequence.
///
void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
unsigned Noops = 0;
for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
if (!Sequence[i])
++Noops;
assert(Sequence.size() - Noops == ScheduledNodes &&
"The number of nodes scheduled doesn't match the expected number!");
}
#endif // NDEBUG
/// ProcessSDDbgValues - Process SDDbgValues associated with this node.
static void
ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) {
if (!N->getHasDebugValue())
return;
// Opportunistically insert immediate dbg_value uses, i.e. those with source
// order number right after the N.
MachineBasicBlock *BB = Emitter.getBlock();
MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N);
for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
if (DVs[i]->isInvalidated())
continue;
unsigned DVOrder = DVs[i]->getOrder();
if (!Order || DVOrder == ++Order) {
MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
if (DbgMI) {
Orders.push_back(std::make_pair(DVOrder, DbgMI));
BB->insert(InsertPos, DbgMI);
}
DVs[i]->setIsInvalidated();
}
}
}
// ProcessSourceNode - Process nodes with source order numbers. These are added
// to a vector which EmitSchedule uses to determine how to insert dbg_value
// instructions in the right order.
static void
ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
DenseMap<SDValue, unsigned> &VRBaseMap,
SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
SmallSet<unsigned, 8> &Seen) {
unsigned Order = N->getIROrder();
if (!Order || !Seen.insert(Order)) {
// Process any valid SDDbgValues even if node does not have any order
// assigned.
ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
return;
}
MachineBasicBlock *BB = Emitter.getBlock();
if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI() ||
// Fast-isel may have inserted some instructions, in which case the
// BB->back().isPHI() test will not fire when we want it to.
std::prev(Emitter.getInsertPos())->isPHI()) {
// Did not insert any instruction.
Orders.push_back(std::make_pair(Order, (MachineInstr*)nullptr));
return;
}
Orders.push_back(std::make_pair(Order, std::prev(Emitter.getInsertPos())));
ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
}
void ScheduleDAGSDNodes::
EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap,
MachineBasicBlock::iterator InsertPos) {
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl()) continue; // ignore chain preds
if (I->getSUnit()->CopyDstRC) {
// Copy to physical register.
DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit());
assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
// Find the destination physical register.
unsigned Reg = 0;
for (SUnit::const_succ_iterator II = SU->Succs.begin(),
EE = SU->Succs.end(); II != EE; ++II) {
if (II->isCtrl()) continue; // ignore chain preds
if (II->getReg()) {
Reg = II->getReg();
break;
}
}
BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
.addReg(VRI->second);
} else {
// Copy from physical register.
assert(I->getReg() && "Unknown physical register!");
unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
(void)isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
.addReg(I->getReg());
}
break;
}
}
/// EmitSchedule - Emit the machine code in scheduled order. Return the new
/// InsertPos and MachineBasicBlock that contains this insertion
/// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
/// not necessarily refer to returned BB. The emitter may split blocks.
misched preparation: clarify ScheduleDAG and ScheduleDAGInstrs roles. ScheduleDAG is responsible for the DAG: SUnits and SDeps. It provides target hooks for latency computation. ScheduleDAGInstrs extends ScheduleDAG and defines the current scheduling region in terms of MachineInstr iterators. It has access to the target's scheduling itinerary data. ScheduleDAGInstrs provides the logic for building the ScheduleDAG for the sequence of MachineInstrs in the current region. Target's can implement highly custom schedulers by extending this class. ScheduleDAGPostRATDList provides the driver and diagnostics for current postRA scheduling. It maintains a current Sequence of scheduled machine instructions and logic for splicing them into the block. During scheduling, it uses the ScheduleHazardRecognizer provided by the target. Specific changes: - Removed driver code from ScheduleDAG. clearDAG is the only interface needed. - Added enterRegion/exitRegion hooks to ScheduleDAGInstrs to delimit the scope of each scheduling region and associated DAG. They should be used to setup and cleanup any region-specific state in addition to the DAG itself. This is necessary because we reuse the same ScheduleDAG object for the entire function. The target may extend these hooks to do things at regions boundaries, like bundle terminators. The hooks are called even if we decide not to schedule the region. So all instructions in a block are "covered" by these calls. - Added ScheduleDAGInstrs::begin()/end() public API. - Moved Sequence into the driver layer, which is specific to the scheduling algorithm. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152208 91177308-0d34-0410-b5e6-96231b3b80d8
2012-03-07 05:21:52 +00:00
MachineBasicBlock *ScheduleDAGSDNodes::
EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
InstrEmitter Emitter(BB, InsertPos);
DenseMap<SDValue, unsigned> VRBaseMap;
DenseMap<SUnit*, unsigned> CopyVRBaseMap;
SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
SmallSet<unsigned, 8> Seen;
bool HasDbg = DAG->hasDebugValues();
// If this is the first BB, emit byval parameter dbg_value's.
if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
for (; PDI != PDE; ++PDI) {
MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
if (DbgMI)
BB->insert(InsertPos, DbgMI);
}
}
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
SUnit *SU = Sequence[i];
if (!SU) {
// Null SUnit* is a noop.
TII->insertNoop(*Emitter.getBlock(), InsertPos);
continue;
}
// For pre-regalloc scheduling, create instructions corresponding to the
// SDNode and any glued SDNodes and append them to the block.
if (!SU->getNode()) {
// Emit a copy.
EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
continue;
}
SmallVector<SDNode *, 4> GluedNodes;
for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
GluedNodes.push_back(N);
while (!GluedNodes.empty()) {
SDNode *N = GluedNodes.back();
Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
VRBaseMap);
// Remember the source order of the inserted instruction.
if (HasDbg)
ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
GluedNodes.pop_back();
}
Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
VRBaseMap);
// Remember the source order of the inserted instruction.
if (HasDbg)
ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
Seen);
}
// Insert all the dbg_values which have not already been inserted in source
// order sequence.
if (HasDbg) {
MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
// Sort the source order instructions and use the order to insert debug
// values.
std::sort(Orders.begin(), Orders.end(), less_first());
SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
// Now emit the rest according to source order.
unsigned LastOrder = 0;
for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
unsigned Order = Orders[i].first;
MachineInstr *MI = Orders[i].second;
// Insert all SDDbgValue's whose order(s) are before "Order".
if (!MI)
continue;
for (; DI != DE &&
(*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
if ((*DI)->isInvalidated())
continue;
MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
if (DbgMI) {
if (!LastOrder)
// Insert to start of the BB (after PHIs).
BB->insert(BBBegin, DbgMI);
else {
// Insert at the instruction, which may be in a different
// block, if the block was split by a custom inserter.
MachineBasicBlock::iterator Pos = MI;
MI->getParent()->insert(Pos, DbgMI);
}
}
}
LastOrder = Order;
}
// Add trailing DbgValue's before the terminator. FIXME: May want to add
// some of them before one or more conditional branches?
SmallVector<MachineInstr*, 8> DbgMIs;
while (DI != DE) {
if (!(*DI)->isInvalidated())
if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
DbgMIs.push_back(DbgMI);
++DI;
}
MachineBasicBlock *InsertBB = Emitter.getBlock();
MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
}
InsertPos = Emitter.getInsertPos();
misched preparation: clarify ScheduleDAG and ScheduleDAGInstrs roles. ScheduleDAG is responsible for the DAG: SUnits and SDeps. It provides target hooks for latency computation. ScheduleDAGInstrs extends ScheduleDAG and defines the current scheduling region in terms of MachineInstr iterators. It has access to the target's scheduling itinerary data. ScheduleDAGInstrs provides the logic for building the ScheduleDAG for the sequence of MachineInstrs in the current region. Target's can implement highly custom schedulers by extending this class. ScheduleDAGPostRATDList provides the driver and diagnostics for current postRA scheduling. It maintains a current Sequence of scheduled machine instructions and logic for splicing them into the block. During scheduling, it uses the ScheduleHazardRecognizer provided by the target. Specific changes: - Removed driver code from ScheduleDAG. clearDAG is the only interface needed. - Added enterRegion/exitRegion hooks to ScheduleDAGInstrs to delimit the scope of each scheduling region and associated DAG. They should be used to setup and cleanup any region-specific state in addition to the DAG itself. This is necessary because we reuse the same ScheduleDAG object for the entire function. The target may extend these hooks to do things at regions boundaries, like bundle terminators. The hooks are called even if we decide not to schedule the region. So all instructions in a block are "covered" by these calls. - Added ScheduleDAGInstrs::begin()/end() public API. - Moved Sequence into the driver layer, which is specific to the scheduling algorithm. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152208 91177308-0d34-0410-b5e6-96231b3b80d8
2012-03-07 05:21:52 +00:00
return Emitter.getBlock();
}
/// Return the basic block label.
std::string ScheduleDAGSDNodes::getDAGName() const {
return "sunit-dag." + BB->getFullName();
}